
AD-AG92 180 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G V/2
DESIGN AND IMPLEMENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT--ETC(,
JUN 80 L A TALMAGE

UNCLASIFIEN

pUNE~hNOEhE-

*g 13.2lllll,_=__
ki.

11111 L. 320 IIL

111111.25 1.Ill' _______

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUIR[AU OF STANDARDS-1963-A

wI

NAVAL POSTGRADUATE SCHOOL
Monterey, California

0

THESISA
DESIGN AND IMPLEMENTATION OF AN

INTEGRATED SCREEN-ORIENTED TEXT EDITING
AND FORMATTING SYSTEM

by

Lisa Anne Talmage

June 1980

Thesis Advisor: F. Burkhead

Approved for public release; distribution unlimited

8011 24 0177

SeculVY CLASSIICATION OF THIS 0A41 r,.t 0 , as , _,

RUAD wNSmRUenNwS6REPORT DUENTATION PACE warms FOuR. M
.is. "OVT KAeown 4CIPSENY' C mtAO a n

64. TITLEI rado llu 0- Oveo

_grated Screen-oriented Text Editing and

Formatting System,. o.aMa o e. mC or ,uuoER

n i GRANT NU

Lisa Anne/Talmage

. 0601 000164 O G NIZATIN N&ME AND ADDROS8 8 1 A IjDlT. N ROJECT. TASK

Naval Postgraduate School V/w NIT fuW4Ns

Monterey, California 93940

to CONTOOLLINGO OFVCE NAME AND ADDRESS -&ah*-w--

Naval Postgraduate School Jun 8 r !f
Monterey, California 93940 IS. -NUMoERo PA Scl~j 15 4

14. MONITORING AGENCY nVAME A ADORESSMI9 offefue IerN CnWSU.CMI 01M1.) I SCUNITY CLASS. (@4 Moo me.)

Naval Postgraduate School Unclassified
Monterey, California 93940 lfie

'k OtCA F¢~ONOI IhOANG

14. 1STNIuION STATEMINT (o I0le00a eJ

Approved for public release; distribution unlimited

7. DIST RIOUTION SVArEMEN T (of Me &"domue 4 D 88R k 0 90010 aB. Dl awin - lm'j

Approved for public release; distribution unlimited

IS. SUPOLMENTAY NOTES

IS. MEy WORDS (CWM.. an ,e* se of 004440? no Ide"It O Sleekr

tet processor, formatter, editor, screen-oriented,

.4 PACT (Cne. MeM.. WC. C nineei Met IUO bp "ee nbet)

Text editors and text formatters/processors are described.
The state-of-the-art in text processing is examined. Design
and implementation considerations in developing an interactive,
integrated, screen-oriented text editing and formatting
system are discussed. A Berkeley PASCAL implementation of such
a system for a PDP-11 minicomputer under the UNIX timesharing
system is presented. Intended system users are non-computer ,___

~~~~~14n COITION OF I NOV 64 It OMLIITC
•0 1 ,.61", ,..,.0,O,,o_.



SaeeumTy CLASSIFICATION OF THIS WAGII(When Does. afedood.

block number 20.

iscientists, e.g. secretaries, business executives, engineers,
students, etc. Programming experience is not required to
utilize the system.

DD, Sori% 1473 2

S/r o-o-e1 sCUft,?, C.AMImCATION OP ?WIS PAISVINIM DOSe 20



V

Approved for public release; distribution unlimited.

DESIGN AND IMPLEMENTATION
OP AN INTEGRATED SCREEN-ORIENTED

TEXT EDITING AND FORMATTING SYSTEM

by

Lisa Anne Talmage
Captain, United States Marine CorpsB.S., William Woods College, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1980

Author 24 J i~
Approved by: 04

Thesis Advior

Second Reader

; ;ha vman,.Opr~n of Computer Science

Dean ofPinformation andPolicy Sciences

3



ABSTRACT

Text editors and text formatters/processors are

described. The state-of-the-art in text processing is

examined. Design and imolementation considerations in

developino an interactive, inteorated, screen-oriented text

editing and formatting system are discussed. A Berkeley

PASCAL imolementation of such a system for a PDP-11 mini-

comouter under the UNIX timesharing system is presented.

Intended system users are non-comouter scientistsp e.g.

secretaries# business executives, engineers, students, etc.

Prooramming experience is mot reQuired to utilize the

system.

4



I|

TABLE OF CONTENTS

I. INTRODUCTION . . . . . . . . . . .. .. . 7

A. THESIS OBJECTTVE. . . . . . . . . . . . . . 7

B. TEXT EDITOR DEFINITION. . . . . . . . . . . 8

1. Line-Oriented Editors .. e . * * e * e 9

2. Context-Oriented Editors. . . .. . . . 10

C. TEXT FORMATTER DEFINITION . . . . . . . . . 11

II. TEXT PROCESSING SURVEY. . . . . . . . . . . . .14

A. COMMERCIAL TEXT PROCESSING. . . . . . . . . 14

B. COMMERCIAL YRENDS . . . . . . e . .. ... 17

C. EXISTING NPS TEXT EDITORS AND FORMATTERS. . 18

D. CONCLUSIONS . . . . . . . . . . . . . . . . 21

III. DESIGN METHODOLOGY . . . . . . . . . . . . . . 23

A. PRODUCT DEFINITION. . . . . . . . . . . . . 23

B. DESIGN GOALS. . . . . . . . . . . . . . . . 24

C. THE DESIGN PROCESS. . . . . . . . . . . . . 29

1. Terminal Characteristics. ....... 30

2. SCOPE Features . . ......... . 31

a. FiIe Handlna . .......... 32

b. Screen-Orientation ..... . . . . 32

c. System-iUser Communications* .e. . . 34

d. Error HandlinQ and Recovery .. . . 35

e. Editimq .. . . . 36

f. Formettina. .. ... ... .. . * 39

5



Do TESTING o o e . . . o . o e o o o o o . e . 42

E. DESIGN APPRAISAL. . o o . o . . . . . . . . 43

TV. IMPLEMENTATION. . . o . o . . . . . . . . . . . 45

A. PROGRAMMING LANGUAGE SELECTION. . s o . . e 46

B. PROGRAM LOGIC AND STRUCTURE . o o-.. 47

C. DATA STRUCTURES . . . . o . . . .o . 48

D. INPUT/OUTPUT HANDLING o o . . . . . o . 53

E. THE SCOPE SYSTEM. o . . . . o . o . o o S 6

F. C04IMAND STRUCTURE . o o o . . . . 0 . 58

G. CURSOR MOVEMENT AND MAPPING o. o . . . . 59

I. EDFRIT. o o 0 0 . 0 . . . . . . . 61

J. ORITE RAW FILE. . o . . . . o . . . . . . . 63

K. LIST PROCESSEl FILE . o . . . . . . . o . . 63

L. SCREEN DISPLAY VICE LISTING o o . . . . . . 64

V. FD)LLOw-lN RORK ANt) ENHANCEMENTS . o . . . . . 0* 66

VI. CONCLUSIONS . . . . o o . . . . . . . . . o 69

APPENDIX A -~FIGURES . - o - . . . o . o o o o 70

APPENDIX B - SCOPE PROGRAM LISTING . . o o . o 80

LIST OF REFERENCES. o . o o . . . . . . . . . . o 152

INITIAL DISTRIBUTION LIST , . . o 0 0 0 . . . 154

6



I. INTRODUCTION

A. THESIS OBJECTIVE

Most existing text editors and formatters currently

available are deficient for various reasons. Soeciiically,

most text editors are line-oriented, many formatters are

non-interactive, and few editors and formatters are

integrated into a single system. For these reasons, the

design of a "better" text orocessing system was undertaken

to demonstrate the feasibility and utility of such a

comprehensive system. Toward this end, a survey of the

current state-of-the-art in text orocessing was carried

out. Based on this research, the design of a "better" text

processino system is oresented.

This system is an interactive, integrated, screen-

oriented, context-oriented text processing system

consisting of both a text editor and formatter. Tt is

designed to be easy-to-learn, easy-to-use, easy-to-enhance,

and easy-to-maintain. Intended system users are non-

comouter scientists# e.Q. secretaries, business executives,

engineers, students, etc.p who may or may not have

orooramming experience. This system has been designed to

aid in the oreparation of documents and/or orograms. The

system has been imolemented on existing Naval Postgraduate

School (NPS) hardware using available software.

T_1



Four features characterize this system. First, it is

fully inteqrated in that the text editor and formatter are

not seoarate entities but complementary Parts of a single

orooram. Secondly, this system is interactive and provides

the user with immediate feedback. Third, it is screen or

disolay-oriented. A visual disolay, on a cathode ray tube

(CRT)-enuiooed terminal, serves to orovide both the editing

and formattina feedback. The screen-orientation eliminates

the need for many hardcooy Printouts as the screen

depiction is exactly how the final, finished oroduct will

appear. Finally, manioulatiOn of the text through the

screen window for Perusal and modification is context-

oriented.

B. TEXT EDITOR DEFINITION

Although the term "text editor" is widely used, it is

necessary to clearly define its meaning here. Tn general,

an editor is an interactive comouter program that allows

the user to create and modify a text file. This file is

simply a seauence of character data. An editor is used to

write documents such as term caoers, theses, letters, etc.,

and oroorams. The text editor oerforms the following

tasks:

- provides access to the text stream from both file

storage and terminal inout,

- adds text to the text file,

- distinguishes between words and soaces to solit

• . . . . . . . . . ..8



and build lines of text, and

- alters the text at a oiven location based on

user soecifications.

Text editors are widely used because corrections and

modifications to the text file are easily made as oooosed

to re-entering a complete uodated version of the text.

Most editors orovide functions to insert, delete, coPy,

move, scan 4nd substitute text within the text file. A

text editor also provides facilities to manipulate the text

file so that it may be created, destroyed, saved or

uodated. Disolayino and/or orintinQ out the text is easily

accomolished. Tn addition, the user is able to locate a

particular location, anywhere in the file# in several

different ways. The user can scan through the displayed

text by movino the cursor, by reQuestinq the display of

soecified lines or by initiatinq a context search in which

the editor attempts to match a specified sequence or

pattern of characters.

There are two distinct types of text editors that

impact uoon this project. The first category is line-

oriented and the second is conte~t-oriented. These

categories are described in the followinq paragraphs.

1. Line-Oriented Editors

Line-oriented editors are those in which the text is

logically divided into lines. A line is a character

9

moi



sequence that is delimited within the file by a special

line marker at its beginning or end. Lines should not be

confused with sentences. This type of editor is

distinguished by the assignment of either a permanent or a

relative line number to each and every line of text. These

line numbers serve as user reference ooints. Editor

commands include line numbers to indicate where the desired

action is to occur. The major advantaqe of line-oriented

editors is their ability to be used on both CRT and

hardcooy terminals and their tolerance of a slow

communication rate. In addition, many secretaries and

typists feel that a physical line is the most logical and

reasonable entity to manipulate while editing. Two other

factors that sell line-oriented editors are the disruption

of touch-typing habits on key-defined function editors and

the comoletely context-free ooeration of character-oriented

editors.

2. Context-Oriented Editors

Context-oriented editors are so termed because there

are no associated line numbers for reference purposes.

Instead the text file is referenced relative to the

existing text by soecifyinq a particular marker or sequence

of characters in a context search, or by the use of

absolute x-y addressinq if available on the CRT terminal.

These files are usually divided into oages which may or may

not be further broken down into lines. Context editors are

10

- i :i :, .. .. .. .-', o ,. l .. f, -t ..



not generally implemented on hardcopy terminals or CRT

terminals with a low baud rate because too much time

elaoses while the page of text is printed out or displayed.

C. TEXT FORMATTER DEFINITION

A text formatter or processor is a computer program

which allows the user to manipulate the text file to

produce a specified output format. Formatters are used in

document oreparation. The Processor keeps track of the

Page format as defined by the page margins, number of lines

Per Page, and line soacina specifications which are all

subject to chanace. It orovides page numbering,

indentation, headinos and footers, and an underlining

capability. A typical text formatter, (So 7, 101,

performs the following tasks:

- accesses the text file from storage,

- distinguishes between format commands and text,

- provides reasonable and general default format

soecifications,

- redefines the format specifications as directea

by the userr

- splits and concatenates lines of the original

text file to Produce lines conforming to the

output specifications,

- fills text by putina as many words as possible

within a line,

11



- outputs blank lines or skips lines,

- Provides for oace ejects or skips to the too of

a new paqe,

- outouts irreoular, non-filled lines of textr

e.g. titles, when directed by the user, and

- allows the line to be centered, right-justified

(aligned alona the riqht margin), or underlined.

Text formatters allow drastic format changes to be

accomolished by the user to improve the document's final

appearance and thus its readability.

Many text processors adjust the lines of text which

means the line is both filled and right-justified by

inserting extra blanks within the line. Soohisticated

formatters, in addition to the Previously mentioned

features, may provide soellinq checks, hyphenation#

footnote oroduction and generation of a table of contents

or indices. Text processors may or may not be interactive.

Non-interactive formatters require the user to visualize

the effect of the format command and later verify the

desired result by printing out a hardcooy listing of the

document. Tnteractive formatters do not require this

mental transformation and verification orocess by the user

because the command result is immediately apparent.

Before oroceedino on to the survey of text crocessing,

it is aoorooriate to define a text Processing capability.

12



Systems oossessina a text orocessinc: cavability are able to

Perform~ th'e Previously mentioned tasks of both an editor

and formatter. For the ourooses of this thesis, word

Processino and text crocessinq are synonymous*

t13



It. TEXT PROCESSING SURVEY

rhe initial steo in this thesis was to survey the

Current state-of-the-art in text orocessinq. In this

survey, the commercial marketolace was reviewed. In

addition, ten existing NPS text editors and processors were

observed. The survey goal was to determine the most

desirable features of a text orocessing system.

A. COMMERCTAL TEXT PROCESSTNG

Although text orocessinq has been around since the

mid-sixties at academic and research institutions, it was

not until the mid-seventies that it became commercially

attractive. The technolonical advances of the early and

mid-seventies brouqht about a rapid decrease in both

comouter size and price. These factors made them very

attractive to perform a variety of tasks, particularly text

processino, in an automated office. FORTUNE's "Trends in

Comouting--Applications for the 80's" (201, describes

automation's imoact in this manner, "In the white collar

factoryp the office, the computer and its microorocessor-

based offsoring are inciting a revolution of epic

proportions with word and text orocessinq.o.." Comouter

vendors of both hardware and software are scramblinQ to

establish themselves in the emerginq office automation

market. The followinq examnles of this scramble were cited

14



in the FORTUNE article 1201. Data General has added text

processinq to the commercial capabilities of its Eclipse

Computers. Nano has aiven all of its VS computers a text

processino capability throuQh "mailword". Germany's

Nixdorf disclosed a second qeneration of distributed data

systems that oerform text orocessing, batch and interactive

communications, data entry, and local file and data base

processino. Ounn, in COMPUTER DECISIONS (4), provides this

estimate of the size of the text processing market,

"Revenues from word Drocessino have jumoed from $Q36

million in 1977 to $1.5 billion in 1978 when 120,000 units

were acquired, and are projected to reach bO0,000 units,

grossino $6 billion, in 1q83."

Two factors causino management's acquisition of text

processino facilities are the secretarial shortage and the

low productivity of white collar and clerical employees.

Dunne in "The Office of the Future Part II" 151, details

the secretarial problem in this way, "...last year [1978J

60,000 secretarial jobs went unfilled, thounh salaries are

risinq more than 10% a year. By the mid-1980's the

secretarial shortfall could reach the quarter of a million

mark." Wilds, in "The Smart Way to Pick Word Processors"

1241, provides an example of the productivity impact of

text process- in. A typical productivity increase

occurred at J. C. Penny Co. where the installation of text

processinq equipment cut turnaround time on typed documents

15

L - i



from "as long as a week" to an average of "next day".

There are two orincioal Products sold by text-

Processing vendors. Stand-alone text processors with price

tags of S6,000 to $12,000 each are the most popular. kn

alternative, the Purchase of a word-processinq Package for

CPUs, makes text orocessing another data orocessino

aoplication. These oackages cover a considerable price

range uo to 575,000. Indeoendent supoliers, rather than

comouter manufacturers, Provide most of this software. A

representative samolinq of text Processing software

packaqes, derived from the January 19R0 issue of COMPUTER

DECISIONS [I], Packages would include the following:

- WORD-ONE--used with IBM 360/40 or above, 370/

135 or above, 4300 series, National and

Amdahl systems; sold hy Bowne Information

Systems for $65,000;

- AZ-TEXT--used with Data General's Advanced

Operatino System and Ecliose System; sold by

Data General Corporation for $4,000;

- Dataooint Word Processing--used with Datapoint

3800, 1800 and 1500 series processors; sold by

Datapoint Corporation for $750;

- Word-Il--used with DEC RSTS/E timesharing

executive; sold by Data Processing Desion, Inc.

for S7,500.

16



There are many text processing systems available for

microcomputers. The followina packages are a few of those

availatole for INTEL-based 8080 and Z-80 microcomputers.

Small Business Acolications, Inc. markets Magic Wand at

$400. The Software Store has MWP (Mini Word Processing

System) for $195. The TRS-80 Microprocessor can use either

The Electric Pencil, for $100 or $150, or Scripset, for S69

or $99. These software packages can be economically.

inteqrated into existina systems without the purchase of

special harlware.

As previously mentioned, stand-alone or dedicated

systems are the most popular. The vendors of these systems

market a complete hardware/software package consisting of a

workstation and the support software. These systems

usually have specialized terminals. "Clustered, or shared

resource, word orocessino systems (which rely on minis and

micros) are the fastest growinq word processing segment"

according to FORTUNE (20). CPT, Lanier, Am Jacquard, Wang

and Xerox are only a few of the vendors marketing these

systems.

8. COMMERCTAL TRENOS

Several interestinQ developments are occuring in text

processina. First, CRT-disolays are inheriting the market

from nondisplay systems. Text processors that use hardcopy

terminals exclusively are being recognized as less

productive and less attractive. Also, significant price

17

ait

.. . . . . I l I. -*. , . .. . i . .



decreases make disolay systems more attractive. Second,

there is a trend toward resource sharing and joint text

Processing and data orocessina. In this area, AXXA

Corporation tackles executive and secretarial productivity

with its new dual workstation, supporting text processing,

electronic mail, calculation, data processing and file

access. Xerox Office Products announced the 860 Advanced

workstation that performs text orocessing, system book-

keepinq and data Processing. Finally, the new systems are

multifunctional. Text Processing is integrated with

telecommunications, facsimile transmission, numeric

processinq, electronic mailing, data entry and access, and

other functions such as search/sort, filing, statistics

generation, etc. (200 251

C. EXISTING NPS TEXT EDITORS AND FORMATTERS

To evaluate the current state-of-the-art on camous, a

review of ten editors, formatters or word Processing

systems was undertaken. These systems were either used by

the author or observed in use. User's Manuals and other

system documentation were reviewed. The followino systems

were examined:

(1) CRT Text Editor NED, 1977, used on the

PDP-1L/70, f21;

(2) AMOS/2 Editor, 1972, used on the AGT-1O,

(61;

18



(3) EDT Editor, 1977, used on tho POP-ll/S0, (71;

(4) Interactive Display Editor Vi, 1979# used on

the POP-11/50, (131;

(5) NROFF text orocessor, lq74, used on the

PDP-1 1I/5 , r161;

(6) TED editor, 1978, used on the 8080 and Z-80,

1211

(7) PRO formatter, 1978, used on the 8080 and

Z-80, 12IJ;

(8) UCSD PASCAL Screen-Oriented Editor, 1978,

used on the 8080 and Z-80v (221;

(9) UNIX Text Editor Ed, 1975, used on the

PDP-1/50, (231; and

(10) WPS-A Word Processina System, 1978, used on

the PDP-A, (261.

These systems covered the entire spectrum of text

editors and formatters from the simole, relatively

unsophisticated, qeneral-ourpose models to complex,

soohisticated, soecialired systems. They also orovided a

fairly reoresentative historical develooment of text

orocesslno systems, from the non-Interactive, line-oriented

NROFF formatter (1974) to the interactive, disoay-oriented,

context editor Vi (1980), and the inteqratedt interactive,

screen-oriented context WPS-8 Word Processinq System

(1978).

19

A, Z1.. .I



Of the ten systems examined# the WPS-8 was the only

stand-alone text crocessinQ system. The other systems were

run on neneral-puronse computer systems. Terminal

characteristics varied considerably among the reviewed

systems. EDP NED, NROFF and WPS-8 utilize special graphics

terminals. NED and WPS-8 require soecial function keys.

UNIXE's Ed and Vi, PRO, TED, and UCSD's editorp can be used

on a wide rance of terminals, both intelligent and dump,

disnlay or hardcocy. AMOS/2 uses a teletyoe.

Of the editors surveyed, AMOS/2, EDT* UNIX's Ed, and

TED were line-oriented. The Context-oriented editors were

NED, Vi, UCSD's editor and the WPS-8. NED and UCSD's

editor performed some formatting functions such as margin

setting, filling, centerinQ, right justification, etc. Vi

and wPS-8 had the most extensive command sets. The command

vocabulary was, unfortunately, so extensive that the user

had to frequently refer to system documentation for help.

Some of the commands were very similar looking but

Performed widely different functions. The special function

keys on the NED and WPS-8 terminals facilitated the editing

Process. Editor commands were generally one character

followed by line numbers where aporopriate. Many commands

were mnemonically indicative of the action performed.

Cursor cositionlng was used on the context-oriented

editors. NED allowed the editinq of more than one file at

the same time, as did UNIX's Ed. An additional feature

20

~I



provided by NED was the capability to divide the screen up

into as many as ten comoletely separate and independent

edit areas.

Of the formatters surveyed, PRO and NPOFF were

non-interactive while NPS-8 was interactive. PRO is used

as a post-orocessor for files edited with TED, and Provides

many formatting features includina footnoting. NROFF and

NPS-8 provide almost any formatting feature ever thought

of. Commands were oenerally two letters in all three

systems and freouently had numeric arguments. NROFF and

TED are sometimes time-consuming to use because of their

non-interactive nature and the user's failure to correctly

visualize command results.

D. CONCLUSTONS

This chapter has Provided a brief survey of the

state-of-the-art in text processing. The evolution of text

orocessina over the last ten or so years has been traced.

Non-interactive, hardcony systems have been replaced with

interactive, softcooy or CRT-based systems. Line-

orientation has been reolaced by context-orientation. In

the oast, editors and formatters were separate systems but

now they are fully integrated into a comprehensive text

Processinn system. Snecial hardware, terminals and micro-

and mini-based stand-alone sytems, have been developed and

are quite common. Not only do the text processino systems

of today oerform editino and formattinq duties but they are

__



also canable of oerforminq a wide ranqe of other functions,

such as system bookkeeDing and data processinQ. Multi-

functional text Processing has become an integral oart of

today's automated office.

22



IIT. DESIGN METHODOLOGY

A. PRODUCT DEFTNTTTON

Before any desian could be contemplated, the final

product had to be envisioned and defined from a user's

point of view. The Product of this effort is an

integrated, interactive, screen-oriented text processing

system. SCOPE, Screen-Oriented Processor and Editor,

performs the Previously defined functions of both a text

editor and formatter. It is imolemented on the existing

POP-1l mainframe, using existing terminals and software.

SCOPE is neneral-puroose and is not intended to perform

graohics or uncommon formatting functions, e.g. the

generation of two columns of text necessary for some

publications. Thesis preparation was a consideration in

the selection of desired formatting features.

From the ten NPS systems reviewed, the followina were

chosen as models for this thesis:

(1) the Vi Interactive Disolay Editorr

(2) the tJCSO PASCAL Screen-Oriented Editor,

(3) the text editor TED, and

(4) the text processor PRO.

In addition, a UCSD PASCAL Formatter, written by the

author, served as a model.

23



The goals, the desian and the development process of

SCOPE will Ne discussed in the remainder of this croapter.

B. DESIGN GOALS

Further research was undertaken to determine the

elements of a good desion. The following Paragraphs detail

design aoals, set for other design and implementation

Projects, that were aoolicable to this system. These

references, "Overview of the Functional Features and

Software Design for a Disolay Word Processor" (141;

Kerninhan and Plauaher's chapters on editina and formatting

(151; "Text Handlina in an Automated Office" t17); and

"Develooment of an Experimental Display Word Processor for

Office Aoclications" (111; served as the basic source

documents.

In SOFTWARE TOOLS 1151, Kernighan and Plauqher discuss

editing and fmrmattina design factors. The following

Points were made in their discussion. Human encineerinq

(the analysis of man's habits and work oatterns in the

attempt to optimize the man-machine interface) consider-

ations are identified as the primary desian factor. For

this reason, an interactive system has streamlined and

terse communications with the user and is easy-to-use.

Experienced users were found to Prefer concise commands so

brevity and mnemonic value are counterbalanced. They

recommend that most formatting occur automatically. Error

recovery is identified as the second major desion factor

24

i.~.



and briefly described. The system cannot quit when a user

enters an erroneous command but must recover gracefully.

Valuable information must be Protected from loss due to

user error. ReliaOilitv is identified as another important

factor. Also, the design must be well-organized because of

the size of the oroqram. A flexible design is desired to

allow for enhancements of more advanced features.

"Develooment of an Experimental Disolay Aord Processor

for Office Applications" [181 furnished the followinq

design information. This software design was heavily

influenced by considerations of resoonse, ease-of-use and

extensibility. A key objective in the desion was to

emulate the tvpewriter in order that the user could

instantly and accurately be Shown the status of the

document beina edited or formatted. Minimization of

ooerator fatigue was considered to be an important factor.

Disolays were used to simolify the user's job and the 'soft

COpy' eliminated the sluqoish resoonse of a hardcopy

terminal. Unlike 'blind' systems where the operator must

keep a mental image of the desired fininished output and

maintain knowledge of the location of material in order to

edit or format, this display-based system performed these

activities for the operator. The results of keyboard

editing and formatting actions were instantaneously

disolayed. The keyboard and the soft copy orovided by the

disolay served as the primary interface for user/system

25



dialoaue. User error was reduced by differentiating

between text and command inout. Althouah the command

repertoire was extensive, users were found to rely upon

only a few basic commands.

In addition to the factors mentioned in the previous

Paraqraoh, "Overview of the Functional Features and

Software Design for a Display Aord Processor" [11i

discussed further efforts made to aid the user. Informa-

tion on the CRT requiring operator interaction was

displayed using menus. A message area, "status and alarm

area", was used to display messages to the user which

indicated the current command, system status and error

conditions. The HELP disolay provided information

pertaininq to the user's current state, e.g. current valid

commands.

"Text Handlinn in an Automated Office" (171 exoressed

the design views found in the following paragraphs. The

design aims in this project were to achieve a good human

interface and an efficient implementation. A good human

interface Teant that the system was easy-to-use ano

easy-to-learn and could be basically described as 'friendly

and forgiving'. An efficient implementation meant that the

provided services were adaptable (easily modified or

expanded), many concurrent users could be supoorted and

machine resources were utilized efficiently. Emphasis was

placed upon streamlining the human interface, makina

26

.=_7



services adaptable to chanqing requirements and utilizing

comouter resources efficiently.

Features that enhanced the human interface were a

unified command structure, a message area and a uniform

mechanism to store and display text. A good human

interface was achieved when actions common to different

services were initiated by the same commands. Full-word

wraparound and rudimentary text formattinq, such as default

margin settings, double spacing, etc., to make the text

more readaole, were provided during text insertion to

improve the human interface. Full-word wraparound

automatically forces a word which would extend into the

right margin to be moved to the next line down. The

message area was set aside for command entry, i.e. to

display and edit commands during their composition; error

messaoes; machine status; etc. It was Protected, i.e. no

user services could be invoked in it. The cursor served as

the pointer to the text being edited. Commands for moving

the cursor and Positioning the text window, i.e. the block

of text currently disolayed in the screen, were uniform

across all services.

Efficient utilization of computer resources was

obtained by storing as little information about the screen

as possible, avoiding duplication of code and minimizing

the communication between screen and the computer. This

system avoided duplication of executable code by unifying

27

L . ., i



the various constructs, operations and data structures

common to a number of services anI implemented them as a

common pool of subroutines. In addition, each service had

its own special purpose routines. This design strategy

made code more compact, but also--even more importantly--

made the the system more adaptable. Existing services

could be modified by adding new soecial purpose routines or

by enhancino the common routines. The same commands in

each service performed a common action making the user's

job much easier.

based on these observations, the followino design goals

for the SCOPE system were set to achieve a friendly,

forgiving and easy-to-use system:

1. to utilize the display or screen as the

editing and formatting vehicle,

2. to provide extensive error-checking and

graceful error recovery,

3. to develop a uniform command structure of

brief mnemonic commands,

4. to incorporate a display message area for

system-user communications,

5. to assist the user through the presentation of

menus and a current command status display,

6. to develop a reliable program,

28

glo1



7. to facilitate prooram adaotability and

maintainability,

8. to utilize computer resources efficiently,

and in addition,

9. to orovide hardware independence in the use of

printers and terminals, i.e. to specifically

eliminate the requirement for specialized

hardware.

The overall SCOPE design is simole and straightforward.

Program reliability and maintainability were much more

important than the considerations of speed and storage.

This does not mean, however, that processor and storaqe

resources were inefficiently utilized. Tradeoff decisions

durina the design Process were made in line with the

following list of oriorities, in order of importance;

ease-of-use, croqram reliability, proaram maintainability

and finally efficient utilization of machine resources.

C. THE DESIGN PROCESS

The design process proceeded in phases. It was

iterative and incremental in nature. The initial phase

dealt with the consideration of terminal characteristics.

Phase Two defined the overall system structure and

capabilities. Subsequent Phases dealt with the definition

of new features and sometimes with the redefinition and

enhancement of existing ones.

29



1. Terminal Characteristics

The first step in realizing the desired product was

the consideration and selection of a minimum set of

terminal characteristics necessary for a

screen-orientation. Only CRT-eouioped terminals were

considered for this reason. Soecifically, two dumb

terminals, the ADM-3A 11 and the DM-1520 [8], were studied

oecause they were used in the implementation. In addition,

the DM-2500 (9] was considered to add a greater degree of

generalization and hardware indeoendence. Ideally, the

terminal used would have an extensive keyboard with many

soecial function keys, e.q. delete, insert, etc.p and a CRT

screen large enough to display a full oage of outout text

at one time. This system, however, is not intended to run

on the ideal terminal but on a large number of widely

available dumb and intelligent terminals.

To achieve the oreviously mentioned design ooals of

generality and hardware independence, the terminal

characteristics chosen for inclusion in the minimum

required set are oresent on most dumb terminals. The

following terminal charActeristics are necessary for

successful imolementation of this project:

a. standard ASCII character set (upper and lower

case, numerals and Punctuation marks),

30

-4 ,



b. nondestructive cursor movement in four

directions (uo, down, right and left),

c. CRT screen dimensions that allow the display

of 12 or more lines with 60 or more characters

per line,

d. communication rate of at least 1200 baud,

e. hardware scrollino feature (cursor movement

past the bottom line on the screen causes all

all the above lines to move up one line),

f. absolute x-y addressing,

g. clear screen,

h. carriage return,

i. bell (used to alert user when an error is

encountered), and

4. control code oeneration.

Uoon entry into the system, the user will indicate

which terminal type is being used. The system will then

make the necessary ASCII code assignments to variables

holding the codes for such display functions as clearinq

the screen or moving the cursor non-destructively to the

right. In addition, the user will indicate the printer

type to be used for the generation of hardcopy output.

2. SCOPE Features

The next ohase in the design orocess was spent

defining tne features or caoabilities to be included in

31

.vis



SCOPE. The text orocessing systems reviewed in section

11.0. were the sources for the chosen features. Each major

feature is listed and briefly described in this section.

For purposes of clarity, the features to be included in the

SCOPE design are grouped into six categories.

a. File-Handling

SCOPE needed to be able to create new files,

save files and access previously saved files. A hardcopy

printout of the processed document should be readily

available and may or may not be produced directly on the

printer. A listing file may be created and sent directly

to the printer or saved in storage for multiple hardcopy

production at the user's discretion. SCOPE generated files

are incompatible with other UNIX editors and formatters due

to embedded format commands. For this reason, SCOPE should

allow the user to put files together in various ways within

the buffer and to write out partial buffer contents as a

file. Any SCOPE file may be added at any location within

the buffer as long as there is enouqh soace in the buffer.

In addition, any segment of text in the buffer may be

copied out and saved as another separate SCOPE file. These

two features should facilitate the "cut and Paste" aspects

of document reorganization.

b. Screen-Orientation

SCOPE should be a screen-oriented or

disolay-based system. The screen will provide the user

32

... ... .. .. I



with a 'soft copy, of the finished document. The visual

display will serve as the editing and formatting vehicle.

The user should be made immediately aware of the results of

any editing or formatting commands. No guesswork should be

involved. A screen-orientation should take advantage of

the visual nature of the editino and formatting process.

Cursor Positioning will determine the text

displayed to the user in the text window on the screen and

will pinpoint the location of most command actions. A

reasonably fast system resoonse is required to maintain the

correspondence between the user's commands and the cursor

movement. A slow resoonse, typical of a busy timesharing

system, disruots this correspondence so that user entries

aoear to be ignored by the system thereby confusing the

user and causing him to introduce errors by duplicating

entries and receive unwanted results.

Cursor movement should occur in one of four

directions at a time, right and down for forward movement.

and left and uo for backward movement through the text.

Movement of the cursor should proceed a character at a time

or a line at a time. Wracaround from the end of a line to

the beginning of the next when going forward, or from the

beginning of a line to the end of the previous one when

going backward should be provided. A carriage return

should olace the user at the first character of the next

line down. Other commands should be available to soeed

33

l .' -



movement through the text bY scrollina through the text a

screenful of lines at a time or a oage of lines at a time,

where a page reflects the hardcopy oage length. Context

should be maintsined during rapid movement through the file

by overlacoina or repeating a few I.ines from the last

screen display of text when scrolling a screen at a time.

No overlap need occur when oaging through the text. In

addition, the user should be able to jump to the beginning

or end of the file upon command.

c. System-User Communications

SCOPE should be an interactive text processing

system. The screen should be the primary interface for

system/user dialogue. Beino interactive, system response

time will be a major determining factor in SCOPE's success.

The user will renuire instantaneous echoing of his input

for verification Purposes and should be able to make

correc- tions by erasing input characters. System-user

communications are not minimized in this design because

many SCOPE operators will be casual users. Such users will

not want to spend a lot of time relearning the system.

A messape area will be a specially defined-area

on the screen for the input and display of user commands,

the display of error messages, the display of current

command status, i.e. which commands are currently available

to the user, end the display of prompts and menus. This

message area should be protected from other system features

34I



except in the case of the terminal's hardware scrolling.

The user should be coached during a SCOPE session through

the use of menus describing the available ootions and

prompts describing the command action and how it is

initiated.

There should be a uniform command structure of

short mnemonic commands. The same command should cause the

same action across the provided services, e.g. a 'q' will

allow the user to exit or quit any service. A relatively

small set of oowerful commands should be available. Text

input and command input should be differentiated for the

user. It is important to keeo the user informed of

orocessina actions not apparent to him, e.g. writing of a

file, by signalino their successful or unsuccessful

comoletion. System messages to the user shoulo be

conversational in tone and understandable. A cryotic

message only serves to confuse and alienate the user and to

introduce error.

d. Error Handlina and Recovery

SCOPE should attempt to prevent user error as

much as oossible by oroviding extensive error-checkinG. As

mentioned oreviously, slow response time will increase user

input error as tyoograohic errors become more freguent.

User command and text input should be carefully screened to

recognize invalid commands or nontext characters as soon as

possible. However, since all user errors cannot be

35



1m
anticioated, the design of the system should attempt to

minimize the impact of those that do occur. Tn generalp

error handling should consist of Providina the user with a

descriptive error messane, forcina active user recognition

of the error condition and finally re-prompting to provide

information about valid command options available. Grace-

fulerror recovery should De attempted and accomplished

except in the case of a catastrophic error occuring to the

base system. The user should be protected from the loss of

text by requiring positive confirmation of its deletion or

the provision of backup files.

e. Editing

SCOPE should provide editing features to

facilitate the composition of documents and programs.

These editing features may be invoked during initial

creation or after creation and storage. During the editing

session, the user should be able to move the cursor or

issue scrolling commands for forward and backward movement

through the text to pinpoint tho location of the edit

action. A standard/ default set of formattino

specifications should be in effect unless the user sets

other specifications. The followina list of specific

features should be available through the SCOPE editor.

- Insert--should allow the user to add text to

the buffer before the character at the cursor. Input text

should be screened for invalid entries and disolayed on

36



the screen. The user should be abe to erase input

characters. If the text is being filledr automatic

full-word wraparound should be Provided at the end of the

line. User acceptance or rejection should determine

whether the added text remains in the buffer. Thp user

should be Protected from buffer overflow.

- Delete--should allow the user to remove

text from the buffer. A character or an entire line may be

deleted at a time. Cursor movement should indicate where

the deletion occurs. Uo or down movement should delete a

line, while right or left movement deletes a character.

The direction of deletion, forward or backward, should be

consistent during the deletion orocess. Contradictory

cursor movement should cause the last deleteo line or

character to he restored to the screen and in effect negate

the deletion Process. Actual removal/deletion of the text

should only occur within the buffer upon Positive user

confirmation. Until this confirmation, the text will only

"apoear" to oe deleted on the screen.

- Locate--should allow the user to Pinooint

the first location of a specified pattern or string of

characters if it occurs within the text. This alobal

search should begin at the current cursor position and

proceed in a forward direction. Only a successful search

will reset the cursor Position to the beginning of the

"located* oAttern. In the event of an unsuccessful search,

37

* 2.



the cursor and the text window remain unchanged.

- Reolace--should allow the user to substitute

one string of characters for another reaardless of their

respective lengths at every occurrence of the target within

the remainder of the text. This global substitution should

begin at the current cursor Position and Proceed in a

forward direction only. The user should be protected from

buffer overflow.

- Exchanae--should allow the user to

substitute one string of characters for another of the same

lenqth at the current cursor Position. As the cursor moves

forward the user inout character will overwrite the

existing buffer contents.

- Copy--should allow the user to duplicate

Parts of text within the buffer. The user should be able

to delimit the material to be duplicated and oosition the

cursor at its new location. Copied text should be placed

in front of the character at the cursor. The user is

protected from buffer overflow.

- Move--should allow the user to reposition a

segment of text within the buffer. The user should be able

to delimit the text to be moved and position the cursor at

its new location. The delimited text should be Placed in

front of the character at the cursor.

- Extract--should allow the user to write out

a portion of the text to another SCOPE file. The user will

38

1 _ i



delimit the body of text to be copied to another file and

then initiate the process. The oriqinal text should remain

unaffected in the buffer.

- Add--should allow the user to add another

SCOPE file to the contents of the buffer. The cursor

position will indicate the Position of the addition. The

new text is placed before the character at the cursor. The

user should be Protected from buffer overflow.

f. Formattina

SCOPE should Provide formatting features to

improve the final document or proaram'-s appearance and

thereby increase its readability. The formatting features

in the design were princioally determined by the

requirements of thesis preparation. During the formatting

sessionp the cursor should mark the position of the

formatting action. Formatting specifications may be set

before text creation and can be modified at any time. The

formatting specifica- tions should he in effect from their

initial setting/entry point until changed or nullified.

Most formatting will be provided automatically on the basis

of a standard/default set of specifications derived from

the NPS Thesis Manual. The following list of specific

features should be available through the SCOPE formatter.

- Margin Setting--shoula allow the user to set

or change the leftt riqht, Paragraph, topp bottom and page

margins at any time.

39

Li



- Pane Lenoth--should allow the user to set or

change the number of lines that can be written to the

nardcooy output.

- Line Soacinq--should allow the user to set

or change the soace between lines of text. Sinole, double

and triple spacino should be provided.

- Skip Lines--should allow the user to add

extra soacing between lines by skipping a specified number

of lines or writing a specified number of blank lines.

- Page Numbering--should allow the user to

number or not number the pages of text. The user should

also be able to increment the paqe number on a specific

page.

- Pane Eject--should allow the user to end a

page at will and skin to the top of a new page.

- Fill--should allow the user to put as many

words as oossible on a line of text and will be the default

mode. Filling should not apply to irregular lines such as

titles or running headers and footers.

- No Fill--should allow the user to place

particular words on a line and create irregular lines of

text.

- Center--should allow the user to center a

line of text.

- Riaht Justify--should allow the user to

align a line of text along the right margin.

40



- Underline--should allow the user to

underline characters within the text. Punctuation marks

should not be underlined.

- Adjust--should allow the user to generate

filled text aligned along the right margin. Extra blanks

will be inserted between words to achieve this result.

- Indent--should allow the user to indent or

move the text to the riqht a specified number of spaces.

- Tab--should allow the user to set tab stops.

- Table-Handlinq--should allow the user to

easily construct tables or columns of text using the tab

key.

- Titles--should allow the user to indicate

five different types of titles or headers, first through

fourth-order and other. The system should automatically

format the first through fourth-order titles as per the

thesis manual, while the other type is centered on a new

page. Header numbering and lettering should be considered

for possible inclusion.

- Running Headers and Footers--should allow

the user to write a soecified message across the too or

bottom of every Page of the document. The user should also

be able to specify where within the too and bottom margin

the header or footer is located.

- Paraoraph/No Paragraph--should allow the

user to define a new paragraph or return the text to



non-paragraoh status.

- Footnote--should allow the user to input the

information to be contained in the footnote which will then

be automatically positioned by the system in accordance

with Thesis Manual directions.

D. TESTING

Ease of testing was an important design consideration.

An incremental approach should be generally taken in

testing. In this method each module is designed, coded and

tested by itself and then added to other tested, workinq

modules. Incremental testing greatly simplifies debugging

by limiting the scope of the errors encountered. It also

allows the discovery of logic and implementation errors

early enough to prevent their repetition in other modules

and thus eliminates the need for major redesians once

underway.

Two debugging tools were designed to aid the test

process. One tool was a Procedure which displayed the text

and format commands within the buffer upon the screen. The

second was a Program which orovided a listing of the raw

file. Roth of these tools replace the format commands with

special or text characters to allow their display/listing

because the control codes themselves are unprintable and

could generate unwanted results, e.g. a form feed.

42



E. DESIGN APPRAISAL

Why is the SCOPE design "better" than other existing

systems? A brief comparison of SCOPE and the reviewed

systems highlights the critical differences. SCOPE's

integrated editor and formatter concept is superior to

separate editor and formatter packages, like TED and PRO or

Ed and NROFF, because the user Performs both editing and

formatting while executing a single system. Because of its

interactive nature, SCOPE is easier and faster to use than

NROFF or PRO. A user cant with SCOPE, change a format

specification and immediately see the results rather than

having to visualize them. It is no longer necessary to

produce a listing or a display in a separate Process for

verification purposes.

SCOPE orovides more extensive formatting features than

are available in NED, Vi, or the UCSD PASCAL editor, and

supports these features with on-line user aids. The user

assistance orovided by SCOPE is more comprehensive than

that of any of the reviewed systems. The conversational

prompts and error messages coach the user through the text

creation Process. The learning curve for effective system

utilization is significantly reduced for the casual users,

who should be ahle to operate SCOPE with a minimum of

external documentation.

SCOPE's limited and simole, yet powerful, command

structure is designed to be less confusing to the user than

"3



many of the others have proven to be. The mnemonic

commands are intended to be easier to understande remember

and to use than those of earlier systems.

Finally, unlike NED and WPS-8, SCOPE does not require a

special terminal with soecialized function keys and/or an

enlarged CRT screen but can be used on a wide range of dumb

and intellignt terminals.

In conclusion, the SCOPE design is a "better" design

because it attempts to incorporate the most attractive

features of the reviewed systems while avoiding the

limitino asoects of earlier systems.

~I~A



IV. TMPLEMENTATION

This section Provides aeneral information about the

SCOPE system. Program details may be obtained from the

Proaram listinQ (Aooendix B) orovided. The listing also

Provides system documentation. An inital introduction to

the system is provided alonq with comoilation and execution

instructions. A list of abbreviations used throughout the

orooram is included. Each function/procedure is briefly

described in the ornaram. Mnemonic namese modularity,

straightforward Iooic and code as well as aoprooriate

comments facilitate Proaram understandinq. Each

function/orocedure is short enough to appear on one oage.

Indentation and the PASCAL keywords aid in the tracking of

oroaram flow. Finally, most variables within the SCOPE

orooram are alobal in nature.

The SCOPE implementation oresented here is character-

ized by its isolation of imolementation details and its

modularity. The isolation of as much as Possible of the

actual imolementation from the oroqram as a whole is

recommended by Plaunher and Kerniahan [151. This

recommended technique facilitates the optimization orocess

or the selection of a new strategy because the desired

result can he obtained by simoly altering low level buffer

manaqement routines. The second attribute of this

45

I *



implementation, its modularity, is recommended by Sharma in

(171. Modularity makes the provided services more adapt-

able to changina recuirements. There is a common pool of

general-puroose subroutines that are called by many of the

services as well as soecial-ouroose routines.

During the imolementation Process the UNIX system

provided two handicaps. The first difficulty was the slow

response time. UNIX suffers measurable degradation

whenever graphics-related programs are executed and/or

multiple users are on the system. The second difficulty

had to do with the special terminal conditions under which

SCOPE ooerates, which are explained in section 0. These

conditions were a nuisance when trying to execute commands

and programs outside of SCOPE. The freauent and necessary

changes of the terminal conditions were not only

inconvenient but tended to increase user error.

A. PROGRAMMING LANGUAGE SELECTTON

An important consideration in the system imolementation

effort was the selection of a suitable Proqrammina

language. A high level language was sought. Desirable

features included structured constructs, flexible and

extensive data structures, and extensive error-checking and

diagnostic facilities. In addition# the lanquaoe had to be

able to distinguish between every character inout at the

keyboard--especially control codes which serve as commands.

Secondary selection criteria were availability

LJ6



(unfortunately the new PL/I compiler by Diqital Research

was not available) and transportability. PASCAL met all of

the above mentioned criteria and was chosen. Soecifically,

the Berkeley Version 1.1 [101 PASCAL imolementation was

selected because of its attractive run-time options. A

POP-11/50 Tinicomouter under the UNIX timesharinq system

(231 served as the host comouter.

B. PROGRAM LOGTC AND STRIJCTUPE

Software enoineerino orincioles (121 were aaplied in

develooino the orooram structure. The too-down design

aoproach was followed. Major functions to be oerformed

were analyzed and decomoosed into smaller, more easily

manaqed subfunctions. Functional modules were desioned to

be suboroorams, i.e. functions or orocedures, and were

limited to one oaae. During the analysis and decomoosition

ohase, SOFTWARE TOOLS (151 and Triyono's thesis (211

orovided invaluable assistance.

Coding and dehuoqina were simolified and overall

proaram clarity improved hy always selectinq the simplest

and most straiqhtforward technioue to accomolish any

"tricky" or comolex actions. In addition, a single

prompting procedure and a separate error messaqe orocedure

were set uo to centralize system communication with the

user. Finally, tradeoff decisions were made whereby

prooram simplicity, reliability and maintainability were

considered more imoortant than speed, storaoe or overall

47



efficiency.

C. DATA STRUCTURES

The Berkeley version of PASCAL does not provide strinq

manipulations and it does not allow the readinq of strings

from text files. In addition, it allows only scalars--

inteaer, characters, or boolean values--to he passed as

subOroQram arguments. Finally, set implementation is such

that sets may not be declared as constants, nor do sets

defined to contain character variables assiqned using the

standard function CHR behave correctly. Despite these

shortcominqs, data structure selection was not a difficult

ohase. In order to facilitate chanoes the actual data

structure is hidden from higher level modules by a low

level buffer management function desioned only to

manioulate the data structure.

Aithin this system there are two Orincipal data

structures. The first is the "raw" text file as it exists

in storage when not beine acted on. It is a seouence of

character data. It consists of the text characters and

format command/characters. Inteqers, reals, hooleans,

strinqs and unstructured data types may not be included in

this file. This file contains a beqinninq and eid of text

character or marker. Within the text, the lines and the

oaraoraphs are set off by a line or Paraqraoh marker

resoectively. Althouoh this line orientation is not

strictly necessary it does simplify many operations,

18



Darticularly the mapping from screen to buffer exolained in

Section IV.r'. The additional system overhead in

maintaining these line markers is a small Price to oay for

the simolification. A oaragraph marker, once set by the

user does not change its relative Position in the text

unless the user resets/deletes it. A line marker, on the

other hand, may be irequently shifted if as many words as

possible are heing olaced in a line, i.e. filled text, or

text is inserted or deleted before tho line marker. Line

and oaragraoh markers occur at the heainnino of a line or a

paragraph.

The format commands, other than markers, embedded

within the text indicate sOecial processing that is to

occur to the raw text before display or Production of a

listing can occur. A format command's ranqe of effect can

vary from only one character to the entire file. If the

text file is created usino a non-standard format, the

characters in the file immediately followina the beqinnina

of text marker are arouoed tonether and called a "format

record". This record only contains those user format

specifications that differ from the standard menu provided.

It should be noted that the raw file is useless unless the

embedded format commands are masked out and orocessed. The

standard PASCAL (I11 orocedures REAn and WRTTE and function

EOF (end-of-file) are used to manioulate data within the

text file.

4q



Soace usaoe was carefully considered. The line and

oaraqraoh "4rkers and format commands could add a

siqnificant amount of overhead to the system by takinq uo

unnecessary soace that could he used for text. This is not

the case, however, because most markers and format

commands, however, overlay what would be a blank between

words. Extra blanks associated with indentation,

tabulation and the end of a line can he eliminated or

comoressed. Within a line two soaces followinq the

punctuation marks, *.'! ' p I and '?' will not be

comoressed because the maooina is simolified. Two

Procedures PROCESSBUF and PPOCESSRAW eliminate and compress

extra blanks as well as insure that Punctuation requiring

two spaces is followed by two spaces where aporopriate.

The most imoortant data structure within the SCOPE

system is the text buffer. Fiqure 4-1 is a diaoram of the

SCOPE buffer. Text and format commands, such as om, reside

in this data structure while underqoino user operations.

This buffer is a larop array of characters of approximately

30,000 bytes. There are several inteaer pointers indexing

this array. 8UFINDX is the current location of oneration

within the buffer. INSBEG and TNSEND are Pointers which

delimit the INSFRT AREA within the buffer. BIIFLIMIT is the

last Position in the array. CH is always the current

character at BUFINDY.

C;0



7 ovement throuoh the huffer is accomolished via the

GFTRUFCt4AR (Direction) function, exceot in the INSLRT mode,

w..here Direction is +1 for forward movement, 0 for no

movement, and -1 for backward movement. The text character

immediately orecedingQ the INSREG location aapears on the

CRT screen at the cursor. Movjng forward, i.e. right, down

or Scrollinn down, throuoh the text is oerformed in the

following manner:

GFTRUFCHAP(41) which means that

BIJFTNOX ::RUFINDX + 1;

IMS9EG ::INS8EG + 1;

BUFFER CBUFINDXI := BUFFERUfNSEND) ;

CH := B'FFER(BUFINDXI.

Miovina backward, i.e. left, uo or scrolling uor through

the text buffer is oerformed in this manner:

GETRUFCHAP(-1) which means that

BUFFEP(TNSENID1 : = BUFFERRU1FTNnxI;

INSENn : =INSEND - 1;

BIIFTNnx: BIIFTNDX - 1;

INSPEG : = TNSBEG - 1;

CH : UFFERNFUFrNnxi.



jL

GETBUFCHAP(O) allows the system to re-referonce the

current buffer location. All of the buffer pointers remain

unchanged. GETBUFCHAP cannot be used in the INSERT MODE

for reasons explained in Section IV.H.

READRAN handles the buffer initialization for both new

and existino files. A file must he read in and initialized

before EDIT or FORMAT processing. Buffer initialization

durino the creation of a new file involves entering the

beqinning and end oi text markers, entering an initial

paragraoh marker and setting the INSBEG, INSEND and BUFTNDX

pointers. Remember that the current TNSBEG and INSEND are

empty. Initialization for an existinq file is somewhat

more complicated. First, the raw text file is read into

the buffer character by character where the first chapacter

goes into the first buffer position, the second in the

second position, and so on. After the file is read, the

text must De shifted so that the INSERT AREA is correctly

positioned. The last character read in is moved to the

second to the last buffer position, the preceding one to

the third to the last position, and so on until the

beginning of text (bot) character is reached. It is not

moved. The pointers, INSREG, INSEND and RUFINDX are set

and in this manner the INSERT APEA is defined. This INSERT

AREA is the key component within the buffer. Text

insertion, deletion, cooyino and movement is accomplished

by resettina INSBEG and INSEND. More details of these

9?



operations may he found in the Droqram listina. Format

commands and line and parAqraoh markers within the buffer

are totally transoarent to the user who only sees them

reflected on the screen.

Several other arrays are used within this system. The

runninq header and footer lines are each stored in an 80

byte array of characters. Two other arrays, of 20 inteners

each, are used in the TABULATION and ADJUSTLN routines.

The column number(s) nf the tab location(s) is(are) stored

in TABLOCNS. Similarly, the relative location of blanks

within a buffer line of text are saved in HLKLOCNS. These

stored values indicate the sites for the insertion of extra

blanks within the text line to achieve riaht justification

with fillina.

0. INPUT/OUTPUT HANDLING

The use of a hiah level lanquaae such as PASCAL

eliminates the messy details of input/outout (I/O)

handlina. T/O to and from the screen is accomolished

usinq the standard PASCAL READ and NRTTE orocedures on the

textfiles INlPUT (keyboard) and OUTPUT (CRT screen).

Correct SCOPE ooeration reauires the settina of certain

I/0 options on the current terminal. The UNIX command

"stty raw -echo nl" sets the necessary options. RAW means

that no erase, kill, interrupt are EOT characters a-e in

effect and that the Parity hit is passed back. NL tells

the system not to automatically qenerate a carriaoe return

53

(i



and line *eed for a new line and that only a line feed will

end a line. Tt also orevonts the use of the READLN and

ORITELN orocedures. -FCHO orevents the system from echoino

back inout characters to the CRT screen.

SCOPE filters the input characters and selectively

echoes back or writes to the CRT screen, preventing the

disnlay of unorintable control characters. A typical case

is the handling of cursor movement in which the user

qenerates right, left, uoward or downward movement of the

cursor. INCHAR is the character read in from the user.

In addition to READ and WRITE, the RESET and REWRITE

procedures are used in 1/O to and from other files. INFILE

and OUTFILE are text files assioned soecific names by the

user, e.g. CHAPI.o and LISTTNG.o. The '.P' indicates a

PASCAL file. RESET is used to open existina files for

reading, while REWRTTE is used to ooen and create a new

file. TNFILE is used in the reading of raw text files and

OUTFILE in the savinq of raw files and the oroduction of

listings. READLN and WRITELN cannot be used on either of

these files because the UNIX eoln (end-of-line) character

does not exist in SCOPE generated files. UNIX writes

OUTFILE in blocks of 512 bytes. The Berkeley PASCAL

function FLUSH is reouired to dumo the last incomplete

block of output to the waitinq file.

54



The lack of string manioulations causes all I/O to be

done a character at a time which is somewhat tedious.

OTSPLAYLN performs the necessary orocessing to display a

line of text on the CPT screen. LISTLN produces a line of

text for a hardcooy listing. both of these procedures call

routines which process any embedded format commands and

only oortray the "orocessed" text as opoosed to the "raw"

text in the buffer. LUSERINPIJT and StJSERTNPUT, for long

and short user inout from the terminal, perform the READ

function. They allow the user to enter a string of

characters with the option of erasing any mistakes by

tvoino a "control e" before hitting the carriage return.

LUSERINPUT allows un to 14 characters to be inout and is

used in the naming of files. It automatically checks each

entry for a '.P' in the name and apoends it where

necessary. SUSFRTNPUT allows uo to 4 characters to be

entered at one time. Two procedures are used because

strinas must be oadded with extra blanks to their full

declared length. The slow response time, due to UNIX

degradation, was a problem. Not only is it disconcerting

to be tvoino several words ahead of what is being displayed

on the screen, hut immediate error correction becomes

difficult. It is no longer a matter of simply erasing one

or two characters that are incorrect. Instead, the user

mioht have to erase and lose several words to get back to

the error. In addition, during the erase action when the

C; 5



cursor is movina backwards a delay can cause the user to

inadvertently erase more than intended.

Because only character data is read and written by the

SCOPE system there is no way of directly entering integer

values for such items as oaoe numbers or margin spttings.

To overcome this deficiency, CONVRTNUM transforms a

character number into its enuivalent integer value. (Jo to

a three digit number may be converted. It currently

handles only oositive values.

E. THE SCOPE SYSTEM

Imolementation oroceeded in an incremental fashion.

The initial phase imolemented a minimum set of system

features. The minimum set of features allowed the

oroduction of a simole oaoer but not of this thesis. This

skeletal system was a barebones aoproach with many options

eliminated, e.g. the basic formatting soecifications

setting un the oaoe layout (marqins, lines oer oane and

line soacino) were defined as constants. Durina the

analysis of system features, the basic system design

evolved into four nested levels or modes. At the highest

or outermost level, i.e. global mode, the system reads or

writes files, edits, formats or leaves the SCnPE system

based on the inout user commands. The global mode (SCOPE

DRIVER/MAINLINE) is the driver of the entire system.

Figure 4-2 is a Pseudo code rearesentation of the SCOPE

DRIVER.

5.4



The second level consists of the followinq essential

System features:

a. read in an existina file or create a new filer

b. write the raw file out to storaae,

c. edit the text file,

d. format the text file in a reasonable manner,

e. prepare a hardcoov listino of the file, and

f. exit from the system.

Each of the above features, except system exit, is a

major module within SCOPE. 0ithin this level lies the

third level of modules or subfunctions, e.q. INSEPT and

DELETE for EDIT. At the innermost and lowest level are the

functions to manioulate the data structures and other

support routines, eeq. cursor movement and mappina. Cursor

movement and maooina are key modules which are discussed in

Section IV.G. The movement of the cursor on the CRT screen

must he correctly reflected in movement throuah the text

buffer. There must be a one-to-one correspondence between

the character at the cursor and this character's location

within the text buffer.

Entry to lower levels. e.a. subordinate modules, is

accomplished by callinq the required procedure or function.

Return to a higher level is usually accomplished via a

"quit" or "control a" command.

57

L .... "
- " ... ' .. . ' -" -... .... ... + . . . - -9



F. COMMAND STRUCTUPE

It is imoortant at this Point to reiterate the chief

design ooal of this system which is to develoo a friendly

and foroivinq tool. Users will probably not be using this

system on a daily basis and so will not be intimately

familiar with commands. Such casual users will not utilize

the system if a lot of time must be scent learnina and

relearning the command set. For this reason, it was

considered imperative to have shortr simple,

easy-to-remember and easy-to-use commands. The command set

is also consistent throuahout the different SCOPE modes of

operation.

This is an interactive, screen-oriented system and

these features are exploited. Three lines at the top of

the CPT screen are set aside permanently as a message area

for the display of oromots and error messages and the entry

of some user commands. Entry and exit from any of the three

outer SCOPE levels causes a Prompt to be oenerated in the

message area. This prompt tells the user which commands

are currently available to him for execution and how to

initiate execution.

Commands are mnemonic and one character in length. The

command is usually the first letter of the action to he

performed. Some commands, e.a. Page number, reauire entry

of a numeric argument. Many commands are dependent upon

cursor movement. In some instances the control key is used

58



in conjunction with another character to differentiate

between a command and a text character, e.g. in the insert

mode. The EDIT and FORMAT commands are described in more

detail in sections TV.H. IV.I.

G. CURSOR MOVEMENT AND MAPPING

Establishinn and maintaininq the correct relationship

between the screen display and buffer was the most

difficult aspect of the SCOPE implementation. There has to

be a one-to-one correspondence between the character shown

on the screen and its location within the buffer. Format

commands are transoarent to the user but must be reflected

on the CRT screen, e.a. a aaragraoh marker is shown by

indenting the line. Cursor mapoing is carried out by the

MAPCUPSOR function which vrocesses the format command and

sets uo the screen display as necessary. SETCURSnR is

another maooinq function which comes into play during the

scrolling actions.

There are two methods of cursor movement available and

both are oresented in figure 4-1. Movement within a single

line is fairly simole but wraooino around to the orevious

line, or jumoinq multiole lines complicates the picture

ouickly. Cursor movement is simolified by making it a

line-oriented orocess. STARTLN and NEwLINE are key

functions in determining the correct user line location.

GETCHAR is used to oroduce movement one character to the

left or right. JMPTOMARKER allows the user to jump to the

59

---------------------------------------



m1*

*beginning or the end of the currently active file. Further

details about the cursor maooing and movement are available

in the oroqram listino.

H. EDIT

EDIT is probably the most important module within the

SCOPE system. It is used to move the cursor and thus scan

through the body of text as well as to make modifications

to the text. The EDIT commands are listed in Figure 4-4.

The ucoer case letters are used to allow the same beginning

letter to be used, e.o. x for xchanae and X for Xtractfile.

In addition, the caoitals indicate file manipulations where

the lower-case commands only deal with the buffer. The EDIT

command modules closely follow the desion, with the

exception of SETMARKER which is used by almost all of the

other EDIT features to delimit the body of text to be

searched, cooied, moved, extracted, etc. Many of the EDIT

features remain to be imolemented.

The initial imolementation involved only INSERT and

DELETE. INSERT adds text directly to the buffer through

the INSERT AREA. Because GETBUFCHAP, the low lovel buffer

management function works on the outside of the INSERT

AREA, it can not track the new characters entered into the

INSERT AREA. All inserted and deleted text must be

Processed by PROCESSBUF to ensure that the line markers are

correctly Positioned. This Processinn occurs in Paragraph

increments because a oaragraoh is the smallest text

60



II
senment. During the text insertion Process, certain

formattina commands are entered directly by the user into

the buffer. Irreaular lines durinq the fill mode must he

ended with a break character. Titles may be labeled at

this time. In addition, the fill, no fill, adjust, adjust

off and the tab commands may he entered.

Along with TNSERT and DELETE, an XCHANGF function was

set uo and used. This allowed the reolacement of many

strinas of the same length. Because the string is the same

lenath during an XCHANGE there is no need to orocess the

the modified text which is more efficient then readinq and

orocessinq at least one oaragraoh to reposition line

markers if necessary. Several users have enjoyed the

automatic wraoaround feature which speeds uo the inout

process.

I. FORMAT

FORMAT imnlementation has been limited to titles,

centering, tabs and other essential features #or thesis

oproaration. The followinq oaragraohs describe the

intended SCOPE FOPMAT implementation.

The Format mode can be entered at any point during the

editing session to chance the outout specifications. It

also moves the cursor to scan the text, and in addition,

some commands deoend uoon the cursor for Proper execution.

The user moves the cursor to the Position from which the

format command will boqin to have effect, enters the

61



correct format command and is then oromoted for the correct

command arguments. Formatting chanqes are immediately

reflected on the screen for user examination.

Figure 4-5 outlines the FORMAT command structure. User

commands are alohabetic characters but the format commands

in the buffer are control codes. All the format commands

were assioned control codes so that they could he easily

distinguished from text characters. The decimal ASCII code

is the argument for the PASCAL CHR function which is used

to assiqn and identify all the format commands within the

buffer. The keyboard control characters are used

infrecuently by the user during the editinq and formattino

process. Certain commands, e.g. break, adjust, adjust off,

fill, no fill, varaoraoh marker and tab may be entered

directly by the user. Within the buffer, the numeric

arguments for any format command, immediately follow the

command and are themselves followed by a break character so

that they may be easily distinguished from text numerals.

Ahenever possible, the input command (command syntax) is

mnemonically indicative of the action to he Performed, e.o.

Ou° for underline. The slashes in certain commands

indicate that the command is complext has multiole

arguments and that the user will go throuqh a series of

PromPts during command entry. Marqins are a qood examole

in which the user mAkes three different entries to set a

specific margin.

62



Menus such as those Presented in Fioures 4-6 and 4-7#

are displayed unon user request to describe the current

outout specifications. Fioure 4-6 will be displayed unless

the user has made some format changes. Fiqure 4-7 will be

disolayed, if any of the default specifications have been

al tered.

J. WRITE RAW FILE

This module in the simplest of the main modules. It

writes out every text character and format command, except

a rubout character, within the buffer to the user-specified

file. The rubout character is used for the deletion of

characters or spaces when it is inconvenient to manioulate

the INSERT AREA to do so. In this manner SCOPE files are

saved for future use.

K. LIST PROCESSED FILES

Hardcooy Printouts or listings af the text file are

required whenever the screen display is not adeauate, e.q.

proofreadino is often more easily accomplished on oaoer.

This orocess is hardware dependent because orinters have

various drivers, carriaae control mechanisms and

top-of-form alignments. To provide some degree of hardware

independence, SCOPE includes a Procedure PRINTER which

queries the uner aoout the printer and makes aoorooriate

marain adjustments.

63



The actual printing process is carried iut in two

steps. In the first steop the format commands within the

buffer are orocessed and tho renuisite charaCters, e.g.

blanks for margins or carriage returns and line feeds for

line and oaranraoh markers, along with text characters are

written to a user-soecified output file. This output file

contains only text characters, i.e. blanks, alohabetic,

numeric and soecial character data, and carriage returns

and line feeds. The second step of the printing process

must be done outside of SCOPE execution and is accomplished

using the Shell command "cat filename.o~lor" 1231. Unless

multiple copies are being made# this method wastes

secondary storage and should be changed before a vroduction

status is achieved. A direct one-sten listing generation

is more efficient.

L. SCRFEM DISPLAY VICE LISTING

Although the desion called for an exact duplicate of

the final harcicoov output on the screen, that is not the

case in thin imolemenvtation. There were several reasons

for this desion departure. Figure U4-9 is a diaoram of the

CRT Screen Layout. Since the area of the screen available

for the display of text is limited (only 21 lines here)#

double-soacina only allows the user to see a small seqment

of text (11 lines). 9etter use of the screen occurs when

the text is sinale-soaced (-1 lines of text are then

displayed). Fiaures 4I-9 And £I-10 illustrate this point.



Te scraen ieviction also does not Show adjusted lines of

toxt. vaooinO the cursor to the buffer contents becomes

much more difficult and reouires the maintenance of

information about each displayed line if wraparound and

other features are continued in their Present form. The

too and bottom marains which include the runnina header and

footer and oaoe number do not apoear on the screen.

Finally, the reoresentation of underlinino is difficult

because the underline character overwrites the text

character at the same oosition.

65



V. FnLLOW-ON AORK AN) ENHANCEMENTS

Although the SCOPE system was used in the production of

this thesis, more implementation and testino must be

carried out before the system is ready for release to

general users. The SCOPE proqram contains untested code

segments, e.a. ADJUSTLN. Sevaral important editing

features require implementation. The COPY feature has not

been fully tested. MOVE has not been implemented. The

COPY, MOVE and XTRACTFILE feature3 need to carefully check

the format specifications in effect at the original segment

location. This may mean qoino back to the beginnina of the

file and checkinq all the format commands between the

beginning and the start of the text 0einq acted on. The

LOCATE feature to do pattern searches can be imolemented

usinq the algorithm in reference (3). To be successful,

LOCATE must identify a oattern that has embedded format

commands. REPLACE will use LOCATE to find the patterns to

be replaced.

Many of the FORMAT specifications are currently fixed

within the oroqram and cannot be modified directly by the

user. FORMAT command sequences were designed but not

implemented for commands renuirina arnuments. In addition,

table-handling and footnote mechanisms must be completed.

The adjusting of text must be implemented for hardcopy

66



orintouts. Running headers and footers should be added.

Uoon comoletion of the imolementation, systematic

testing of the SCOPE system should he conducted. A user-

oriented SCnPF Manual should be be developed. A UNIX Shell

Proaram should be develooed for system initialization and

termination. This orogram would handle the setting of the

terminal stty oOtions and initiate execution.

Once in a production mode, "Ougs" uncovered by tme

users will have to he corrected. Surveys of SCOPE users

should be conducted to determine sunqestions for stream-

linina oromotino and command sequences, overcomina the most

common user errors, and enhancing the system. An

efficiency analysis, usina orofiles, should be conducted to

determine the most suitable areas of code for ootimization.

This system is intended for use in the oreparation of

oroarams as well as documents, but so far no work has been

done in that area. The format commands, heina control

codes, will have to be masked out or nrocessed before a

SCOPE file can be used as input to any compiler.

There are many oossibilities for system enhancement.

SETMARKER could be exoanded to allow the user to set other

markers within the file to Pinpoint soecial locations. The

adjusting of text lines on the screen and the associated

mapping to successfully handle the extra embedded blanks

would be a worthy Project. Underlinina could be

represented on the screen as another line of blanks and "-"

67

- -. . . ...- -



characters underneath the required oostion.

The paqe concept on the screen where the oaoe marqins

are actually shown delimited on the screen with the "V

character down each side for instance and the top and

bottom of the oaqe indicated hy dashes ("-") across the

screen could he introduced. In this manner the screen

becomes a more exact cooy of the final output document.

Carryino this further, the oace scrollinq mechanism would

not only scroll throuah one hard cony equivalent of a Page

but allow the user to request a oarticular oaae by number.

An UNDO command allowina the user to easily recover

from his last action miaht be heloful. Another valuable

feature would be the orovision of a document index

containina Pertinent information about the document such as

its title, date of last undate, size, etc. This index

would be readily accessible to the user from the command

level. The introduction of a macro-orocessina capability

would be another possibility for enhancement. Finally,

common document formats could be stored as templates to be

easily accessible to the user.

This desiqn could be imnlemented on other systems. The

INTEL-based 8A80/Z-80 microprocessors are prime candidates

using the new PL/T compiler by Dioital Research. Another

candidate for SCOPE implementation is the IBM system

scheduled to be installed at the W. R. Church Computer

Center in the fall of 1980.

68



VI. CONCLUSIONS

The design criteria for a "better" text processinq

system were discussed and a desian was developed. This

design was based uoon an examination of currently available

systems and a review of the design criteria set forth by

recognized desioners such as Kernighan and Plauqher and

Xerox personnel. SCOPE's screen orientation, interactive

nature and intearation of services are the keys to this

better desion. The imolementation demonstrates the

feasibility and value of such a comprehensive system. It

is hooed that the design criteria oresented here can serve

as a guide in the develooment, evaluation and selection of

commercial text processing systems, as well as presenting a

basis for the design of new text handling systems.

69



APPENDIX A

cursor,

:c o:: :INSEPT APEA: :C n P E S v s t em ,conI T

b i

e u M n u
a f s s f
i i b e a

M n e n
n d o d m

x

the above buffer contents would apoear on the screen as:

SCOPE Syst em.

where -'reoresents the cursor vOSition.

Fioure 4i-1. SC OPE Buffer Layout

70

.I I I
a.aa ....... . ... a a a a a a a a a a a , . a "



begin 4SCOPE DPIVEP/MAINLINE)

initialize variables;

t erminmal;

mrn ter;

set defaults;

set format cmds;

ci earse reen;

reoe-3t

oromot;

userinput (cmd);

if valid cmd then

case cmd of

e' ed it;

*? format;

'Pl: listorocessed;

one': ston := true;

r'! readraw;

owl: writeraw;

end Icase)

else inot a valid commandi

errormso

until stoo;

end.

Fioure 4-2. SCOPE Driver

71



Method T

move uo I line, staying in same column

t or the one closest to the left.

move right 1 column# at end of line go
to first char of next line down.

Move down I line, staying in same colI or the one closest on the riaht.

move left I column, if beginning of line
oo to last char of Previous line.

Method TI

cr move to first char of next line down.
$Us. Scrollup, move un aporoximately 3/V9s

of the screen with 5 lines of overlao.
fr~v Scrolldown, move down aooroximately 3/V's

of the screen with 5 lines of overlao.
Go to the beciinnina of the file.

Sel Go to the end of the file.

Finure 4-3. Cursor movement



Command Command Function
Synt ax

A Addf i le

C CODY

C Cursor Movement

d del ete

i insert

I locate

m move

Qui t

r reol ace

S setmaricer

x exchancie

X eXtractfi le

Fioure 4-4 SCOPE EnIT Commands

73



Decimal Command Formattinq Com~mand Keyboard
ASCII Syntax .ont rol
Code Code

I a Adjust A
2 hBreak B
3 e Center Line C

4UNUSED rUNIX enel of filpi D
Is e Page Eject E
6 fFill F
7 rn/n/d Page Number Maroin G
8 h/h,f/l,m,r/O Running Header/Footer H
9 tab key Tab I

10 line feed key UNUSED (UNIX 1J1
I1 Ii/ Indent
12 1 Lime Spacinq L
13 carriaoe return Line M4arker4
14l n/+,N Page Number N
19 0 FilIl Oftt 0
16 control o Paragranh Marker P
17 m/t/11 Too Mrnn Q

IsrRight Just~ify Line R
IQs4Skio Limes S

20 t/a Title T
21 u Underline U
22 available V
23 // Left margin V
24J x Adjust Oft X
25 control v Beginning ot text Marker Y
26 control z End of text Marker Z
27 h Begin Delimiter MarkerI
28 n/b/tt Bottom Margin

29e End Delimiter Marker
30 m/r/0 Right Marain varies
31 m/U/ Paragraoh Maroin varies

Fioure Ll-5. SCOPE FORMAT Command Structure

7L4



DEFAULT/STANDARD FORMAT MENU

Bottom Marnin 9 Ins = 1 1/2"
Left Margin C0113 = 1/'*"
Paoe No. Magiqn 6 Ins = 1"

Paraqraoh Margin coi17 Ltmargin+4
Riaht Margin co172 1 1/4i"
Too Margin 6 Ins =1"

Note: 10 chars/inch and b ins/inch.

On Screen On Listing Page

Adjust mode off on
Fill Modo on on

LineSoacinq Sinn)@ diout1e
Max lines 21 66
Window Size 21 N/A

Tab 4 4

Fiiure 0-6. SCOP' FORMAT Menu(flefauit)

75



CURRFNT FORMAT MENU

Rottom Mla.Qjn 6 Ins
Left Maroin col R
Paoe No. Marain 3 Ins
Paraoraoh Majrajn c011?
Rioht Maroin co172
Tor) Marain 6 Ins

Note: 10 chars/inch and 6 Ins/inch~.

On Screen On List ing Page
Adjust Mode off off
Fill Mode of f of f
LineSpacina double double
Max lines 21 66
Window Size 10 N/A
Tab ~ P 8

Fiqijre 4-7. SCOPE FORMAT Menu(Current)

7h



S,

L P C R E
-----------------------------------------------------------

2 Messae Area

-----------------------------------------------------------

7

10I
I1 I
12 Text A rea
13

16
17

19

20
21
22
23
241

--------------------------------------------------------------

L ==: Left Marnin Settina
P z:> Paraaraoh Marqin Settirnq
C ==> Center of the Screen
P RiePjht Marajn Settinq
E : Last Columrn

Fiqure 4-8. CRT Screen Layout

77



EDIT MODE o)uit A)ddfile X)tractfile C)ursormove
c)ooy d)elete i)nsert 1)ocate m)ove
r)eolace s)etmarker x)chanoe

A1though the desiqn called for an exact duplicate of
the final hardcooy output on the screen, that is not the
case in this imolementation. There were several reasons
for this desion departure. Fiqure 4-8 is a diaoram of the
CRT Screen Layout. Since the area of the screen available
for the disolay of text is limited (only 21 lines here),
double-qoacina nnly allows the user to see a small seoment
of text (11 lines). Fetter use of the screen occurs when
the text is sinolle-soaced (21 lines of text are then
disolayed. Fiqures 4-9 and 4-1O illustrate this Point.
The screen deoiction also does not show adjusted lines of
text. Maooino the cursor to the buffer contents becomes
much more difficult and requires the maintenance of
information about each disolayed line if wraparound and
other features are continued in their Present form. The
too and bottom marqins which include the runnunq header and
footer and oaae number do not aooear on the screen.
Finally, the representation of underlinina is difficult
because the underline character overwrites the text
character at the same oosition.

Fiqure 4-q. Sample SCOPE Screen Visolay N1

78



EDIT MODE n)uit A)ddfile X)tractfi le COursormove

C)ODy d)eletp i)msert l)ocate m)ove
r)eolace s)etmarker x)chanoe

Althougjh the desion called for an exact duplicate of

the final hardcoov output on the screent that is not the

case in this implemnentation. There were several reasons

for this desion departure. Figure 4i-8 is a diaoram of the

CRT Screen Layout. Since the area of the screen available

for the disolay of text is limited (only 21 lines here),

double-soacino only allows the user to see a small segment

of text (11 lines). Petter use of the screen occurs when

the text is sinalle-soaced (21 lines of text are then

disolayed. Figures 4-9 and 4~-10 illustrate this point.

The screen 1eoiction also does not show adjusted lines of

Figure 4~-10. Sample SCOPE Screen Disolay 42

79



APPENDIX B

SCOPE

SCOPE, SCreen-Oriented Processor and Fditor, is an

interactive, intearated, screen-oriented, context- oriented

text orocessinq system. It performs the functions of both

a text editor and formatter. The followinq paraqraohs

orovide a brief descriotion of the intended SCOPE System.

Ahile usinq SCOPE, the file that is edited or formatted

is disolaved on the CRT screen which acts as a "window" on

the text. This file exists in a stream format, i.e., the

file is a continuous stream of character data. In this

character stream, the lines of text are defined by a line

marker or a oaraoraoh marker which oreceeds each line or

oaraqraoh resoectively. Alonq with the text and markers

the stream also contains format commands which cannot be

confused with either the text or markers.

The cursor oosition on the screen serves to pinooint

the text to be orocessed. Cursor movement occurs in one of

four directions; down and riqht for forward movement and up

and left for backward movement. movement through the body

of text is accomplished character by character, line by

line, a screenful of lines at a time, or by a pAqp of lines

where a oage reflects the hardcopy orintout length. Raoid

movement throuqh the text is oerformed usinn commands, e.c.

'D' for scrolldown, which allows the user to move forward

80



throunh the eauivilent of 3/4's of the screen.

Durinn the editina session, text is inserted in free

format with full-word wranaround at the end of each line.

The system worries about each end of line thereby freeing

the user to concentrate only upon inputina as rapidly as

possible. Blocks of text may be copied from one olace to

another within the same file and to another file. Deleted

material is not removed from the buffer until the user

positively acknowledoes this action thus rreventinq some

unintentional errors. Context searches are also available.

Table construction is facilitated by the use of tabs. The

format specifications are in effect durina the edit

process,

In the formattina mode the user immediately sees the

Processed results upon the CRT screen. The cursor position

anain determines where the formatting action is to occur.

Menus are provided to the user for the selection of desired

formattino specifications. There is a default menu that

orovirtes the user with a reasonable page layout as defined

by the NPS Thesis Manual. Hardcooy printouts of the

document may be qenerated on various models of Printers.

Centeringp rioht justification, i.e. aliqnment alona the

riaht marain, underlininG, running headers and footers and

footnotina will be orovided.



SCOPE Execution Commands

% sttv raw -echo ml
% ox scope (does not aopear orn screen)

enter the term iral type as follows:
1 for adm-3a, 2 for dm1920, 3 for dm2500

print listirna on UNIX orinter--y or n?

COMMAND MODE >
e)dit f)ormat lMstino o)uit r)eadfile w)riteiile

SCOPE Compilation Commands

% Di -o filename.o (to comoile source)
-Z (to generate profile counters)
-0 (necessary to turn off stint

% my ob; scope {to correctly name the object
modulI we I

% oxn -12 filenamp.o (orovides formatted oam listing)

% oxo -z filename.o Ito generate profile)
limit counter)



orogran scooe~inout, outout, infle, outfile);

(abbreviations used in SCOPE in alohabetical order ...

addr : address
bp beg heainninq
b ! bottom
bik : blIan k
buf : buffer
C : center
ch, char : character
chg : chanmae
c "d : command
cnt, cntr : Colintr counter
col : column
const : constant
convrt :convert
cr, C : carriage return
D : scrolldown
del : HelIet e
di r : di rect ion
e La end
in M inout
j, indx !index

imit initialize, initialization
inc :increment
ins ?insert
imo :jumo

I left-
If :line feed
lm :line marker
I n I inme
iocn location
m .marker

max *maximum

msq ?message

neq negative
nor num :number
o : of
Do oara : oaraoraoh

Do * oaoe
om t oara(3raoh marker
ons : nositive
r :right
t : too, text
u : under, uo
U : scroliupA
var : variable

end abbreviations

83



c oms t
overlao 5; (*no of Ins to be recooied durinq seroflinq*)
buflimit 30000;
lImaxchars = 14 (*limit on user inout of lona 1enqtrm*)
smaxchars = 4; (*limnit on user inout of short lenqth*)
msains 3; (*no. of lines in mvsa area*)
linel 1;
I ine2 2
I ine3 3;
neql = -1 ;
Oosl = +1 ;
zero 0;
COlS 8;
col 1 12;
co)2LI 24

84.



var

emotybuf, fileread, mamingfile, stoo: boolean;
fill, markersok, alistinq: boolean;
begmset, endmset, newmset: boolean;

ch, cmdcIharp entchar, hell, botcHar, down: char;
acceptf erase, Quit, om, )m, li, cr, clear: char;
bin, em, nin, inchar,. home, left, uo, right: char;
centerinch, underinch, titlech, ociejectch: char;
indenitch, headerch, footerch, filich, ruhout: char;
pgr'umch, filloffch, skiolnClh, breakch: char;
rtjustifych, Imarginch, rinaroinch, tabch: char;
tmyarainch, bmarqinch, omarqincN, Pomarqinch: char;
adjustch, adjustoffch, insoacinach: char;
fesca~e, rubout:char; don't work in raw model

buffer: array lI..buflimitl of char;
cind: array 1..smaxcHarsl of char;
name: array t1..Imaxcharsl of char;
footbuf: array (1..801 of char;
headbuf: array (1..801 of char;
underlnbuf: array rI..FOl of char;

infile, outfile: text;

cvndset, edcmdset, cursormoveset: set of char;
(cursorinoveset is only for documentation ourooses
because this Pascal doesn't allow chr defined
variables in a set to be recoqnized oroperly.)

nr bufindx, insend, insbeq, number: intener;
rowno, colno, lastcol, lastln, oageno: integer;
termno, blnoffset, tlnoffset, rinarain: integqer;
binargin, )margin, ogmarain, oinarain: integer;
tmarain, iaxoqins, Insoacing: inteoer;
delbeg, delend, jo i, beatext: integer;
beqindx, endindx, newindx: integer;
charcrnt, centerofpq, tab, tahcnt: integer;

blkloens: array rl..20J of integer;
tablocns: array 1l..201 of integer;



function bat: booleam;

(this func indicates that the heainninq of

the text has been reached when it is true.*)

beci n (*bat
bot := ch =botchar

end; (*bat

function boin: boolean;

(*this tunc indicates that the char (04) read
from the buffer or file is the beginning of
line marker# i.e. in. *

beg, n (*boin
boln := ch =im

end; (*boin *

function boo: boolean;

(*this tune indicates that the char (ch) read
from the buffer or file is the beginning of
oaragraph marker, i.e. om )

begin (*boo *
boo := ch = m

end; (*boo *

function break: boolpan;
(*this function indicates that the char (ch)
read from the buffer or file is the break char.*)

begin (*break *
break := ch = breakch

end; C*break *

function ect: booiean;

(*this func is analogous to the eof and coin
fuocs and indicates the end of the text has
been reached.*)

begin (* ot *
eot ch e otchar

end; (*ot *

86



A4

function formatchar: boolean;
(*this tune is true when ch is a format
command or Dart of one.*)

begin (*formatchar '

if (ord(ch) >= 0) and (ord(ch) <= 31) then
formatchar := true

else if ch in ('' '2', '3', 'JJ', 15'1 then begin
(check for numeric Dart of format commands

ch := oetbufchar(-I);
formatchar := ch in Ititlech, lnsoacinach);
ch := oetbufchar(tl,)

end;
formatchar := false

end; (* formatchar *

function textchar: boolean;

(*this func is true when ch is a valid
disolavable text char only. Line/cara
markers and format commands cause a false
value to be returned. *

beoin( textchar *

textchar ::(ord(ch) >= 32) and (ord(ch) <= 126)

end; (*textchar *

87



function qethufchar(inc: integer): char;

(*this func oets a char from the buffer. Tt
is either the oredecessor, same or successor
to the last char returned.*)
0* inc has the values +1,0,-1.*)

const
meal =-1;
rero 0
p~ost +1;

begin (* etbufchar *
case inc of

meal:
bee in

buf fer Hinsend] : buf fer rbuf indxl;
insend ::insend -1;

bufindx :bufindx - 1;
insbeg :insbeg - I

end;
zero:

null; (* no chance within the buffer *
ooSl:

bea i n
bufindx ::bufindx +' 1;
insbeg ::insbeg + 1;
insend ::insend + 1;
buffer (bufindxl := butler (insendi

end
end; (* case *
getbufchar ::buffertbufindxl

end; (*qethufchar *

BA



function Inlenoth: imteqer;
(*this func counts the chars, includingl
spaces w/in the current line of the buffer and
excects the buffer position to be at Im or om.*)

var
cnt: i' teoer;

begin (*Inlemoth *
cnt : 1
repeat

ch ::oetbufclhar(tlj;
cnt ::cnt + 1

until newline or eot;
lnlength := cnt;
(return~ to beginning of linef
repeat

ch ::qetbutcher(-l);
Cnt ::Cnt I

untilI cnt < 0
end; (* nlength *

89



function newline: boo)ean;
(*this func is true whenever an Im, om,

or format cmd inndicatina a new line is
encountered.*)

beqin (* newline *)
newline := ch in (hreakche om, Im, titlech, oQejectchl

end; (* newline *)

function center: integer;
(*this func returns the startina oosition

for the centerina of a line.*)

beqin (* center *)

center :: centerofog - Inlenath div 2

end; (* center *)

90



orocedure terminal;

(* this orocedure sets the terminal constants, i.e.

ascii codes based on the user inout terminal type.*)

var
ans: char;

orocedure adm3a;

(*this proc assions the unique adm-3a terminal codes.*)

beim (* adm3a *)
home := chr(30);
clear := chr(2b);
uP := chr(11);
right := chr(12)

end; (* adm3a *)

procedure dm1520;

(*this Proc assigns the unique dm-1520 terminal codes.*)

beain (* dm1520 *)
home := chr(19);
clear : chr(12);
uo := chr(31);
right := chr(2 )

end; (* dm1920 *)

orocedure dm2500;

(* this oroc assigns the unique dm-2500 terminal codes.*)

beoin (* dm2500 *)
home := chr(2);
clear := chr(30);
up := chr(2b);
right :2 chr(28)

end; (* dm2O0 *)

I *J



Procedure termcodes;

(*this Proc assions the ascii terminal codes
that are Common to all the terminals used w/
this systemy.*)

becin( termcodes *
lastcol ::80;
last In :: 4;
bell := chr(7);
er := chr(13);
If := chr(I0); (* down *
down := chr(32);
(* note that If/down aooears as ' on UNIX *
rubout :=chp(l1'"7);

(rubout from terminal doesn't work in raw mode)
fescape := chr(27); doesn't work in raw mode)
left := chr(P);
acceat :chr(I); (*cntrl a
erase ::chr(5); (*cntrl e *
ouit ::chr(17) (*cntrl a '

end; (*termcodes *



beoi n (*terminal *

write(chr(26), chr(12), chr(30));
write(' enter th~e terminal type as follows:')
wri te(chr-(13), cPhr( 10));
write('1 for adm-3a, 2 for dm1520, 3 for dm2500');
write(chr(13), chr(10), > 1)
repeat

read Cans)
until Cans z '') or (ans '2') or (ans'')
t ermeodes;
case ar's of

' 1'0:
beai n

adm3A;
termno :

end;

bea in
dm1920;
termno ::2

end;
'3'1:
beai n

dim?500
termno ::3

end
end (* case *

end; (*terminal *

93



oroce durp setdefaults;
(*this Proc sets the default values for
a standard 8 112" x 11" sheet of caoer
e.a. mrairs,etc.*)

beojo ( setrlefaults *
fill := true;
bmaroin ::9; (* 1 1/2"
I InarQin m 13; 1* 1/411*
oqmargin,: 6; (*1" *)
omaroirn: 17; (*4 scaces in~ fm imaroin *
tra rcin :: 72; (1 1/4"
tmaroin :: ; t* 1" *
mayooins 66b;
InsoacioQ : 2;
centerofog :C rmarain - lmariin) div 2 + Imarain;
tab ::4;
m :: I
reneat

tablocmsr,) :=lmarqin + I + tab * n;
m := m + I

until (m 21) or (tab *n >= 0)
end;: (* setdefaults *



orocedure setformarcmds;
(*this P~roc assians the ascii codies for the
format cmds and markers used w/'in this system*)

begi n (A setformatcmels
adiustch :: hr(1); (k cntri a ~
breakch :~chr(2); (* cntrl b *
cernter~nch ::chr(l); (*cntrl c *
tmiarqinch :~chr(4); (* ntri d *
opejectch ::cir(5); (* ntrl e
fillch :=chr(b); (* cntrl f *)
ogmarginch := chr(7) (* cntrl a ~
headerch :=chr('A); (*cntr1 h *
tabch := chr(9); (* cntrl i *)
indentch :=chr(I1); (* cr'trl k
Insoacinroch := chr(12); (* cntrl I *
Im :=chrCI3); (*line marker =cr*)
o~qnuinch := chr(1*); (* cntrl n*)
filloffch := chr(19); (* cmtrl o
om := chr(lb); (*oara '-arkpr = crmtr1 o*)
footerch := chr(17); (* cnrrli *
rtjustifych :=chr(1P); (* cr'trl r k
skiolnch :=chr(1 9 ); (* cmr~l q~

underinch := chr(?1); (* cn-tr] u
nm := chr(28 (*new Tar'cer=CrtrI v*)
flmarainch :=chr(23); (* cntrl w*
adjustoffch := chr(2u); (* crmtrl k
botchar ?chr(29); (c ntrl y
eotchar chr(2b); (~cntrl z *
bm := chr(?7); (*begin marker~cntrI *
b'marginch := chr(29); (* cntrl \ *)
em := chr(?9); (*end marker~cntrl 1*)
rmarainch :~chr(30); (*varies *
pmarqinch ::chr(31) (*varies *

end; (*setformatcmds *



AD-A092 180 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 9/2
DESIGN AND IMPLE0ENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT--ETC("JUN 80 L A TALMAGE

UNCLASSIFIED NLU IIIIII
EllEEEEEEEEI-
lEElllEEEEEE-IIuuuunnuunuInIMEEII



ua 1 32 f122

11111I *'L250 Jf2

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU (if STANDARDS- _I963-A



DroCedure xyaddr(cols row: inteqier);

(*this proC initiates absolute x-y addressina on
the crt screen for adm-3a and dm-1520 terminals.
termnum is 1 for the adln-3a and 2 fror the dm-1520.
col is the actual column number on the screen
from 1 to 80 where the disolay is to occur.
row is the actual row number on the screen
from 1 to 24 where the disolay is to occur.*)

begin (*xvaddr *
case termno of

1: (* adm-3a *
wri te(chr(27) ,chr(61) ,chr( row+31 ) chr(col +31));
(31 is the offset for ea. value to set the
correct ascii code.*)

2: (* elm-1520 *)I
write(chr(30)p chr(col + 31)p chr(row + 31));

3 :
begin (* dm-2500 *

(*the offsets vary in settinQ the correct ascii code*)
if cal <2 32 then

col := cal + 95
else if (col ):= 33) and (col <= 64) then

cal := col + 63
else if (cal 2-2 65) andi (col <= 80) then

col := col + 31;
write(chr(12)p chr(col), chr(row + 95))

end
end (*case *

end; (*xyaddr *

96



Procedure suserinput(nochars: integer);

(*this proc gets nochars of user input. A
4cr)- terminates short user input.*)

begin (*suserinnut *
i:= 1;

repeat
read~inchar);
if inchar = erase then begin
write~lefte ' 'rleft);
j := i - 1

end else begin
if inchar <20 cr then begin
write~inchar);
if i <2 smaxchars then

cmd~iI ::inchar;
I := i +

end
end

until (inchar :cr) or Ci ' smaxchars + 1);
if i A= nochars then

for n := i to smaxchars do
cmd~nl :

else
for m := nochats + 1 to smaxehars do
cmd(nl :

end; (*suserinout *

97

........... ___



procedure luserinput(nochars: inteoer);

(*this proc gets nochars of user input. A
*cO, terminates long user ineut**)

begin c*luserinout *

reneat
read( inchar);
14 (inchar z erase) and (i 1) then begin

write~left, ',left);

I O: i - 1
end else begin

If inchar <> cr then begin
wri te i nchar);
if i <2 Imaxehars then begin

nametji : inchar;
1 +

end
end

end
until (inchar = cr) or (I Io Imaxchars + 1);
if naminqfile then

(*check for .P in filename*)
i0 (name(i -21 <> '.1) or (nameti -11 <> 'n') then beqin

if I <= nochars - I then begin
name(i) :2 1.';

nameti + 11 :1 o'
I := i + 2

end else begin
name (nochars -11 :''
nametnocharsi :

end
end;I

if I 4= nochars then
for m :2 1 to lmaxehars do

nametni :
else

for n nochars + I to Imaxehars do
namfetnl :2

end; (*luserinput *

~27~7I9;2



orocedure convrtrmum(i: inteqer; var mum: inteqer);

(*this Proc converts the char number in the
string startino at index i into an inteaer value.')

function unit(charno: char): inteoer;

.(*this fune returns the unit intecier value
of the Char number.*)

begin C'unit k)
unit :2 ord(charno) -ordVOI)

end;( unit *

begi n (*convrtnum *
m :z 0:
reoest
n := n +1

until cmd~li. + m
case n of

1:
num :2unit(cmdlI);

2:
num :~unit(cmd(iJ) 10 + unit(cmd(i + M);

num:=unit(cmdtil)htOO+unit(cmdti+ll)*10iunit(cmdti+21)
end C'case '

end; (*cormvrtnum 0)

99



procedure blankln(rownum: inteoer);

(*this Proc causes a line of blanks to be

printed extendinq from the left screen
boundary to the 75th col on the rioht so
that the bell doesn't ring each time.)

begin (* blankin *)
xyaddr(l, rownum);
write('
write('
write(

end; ( blankin *)

procedure msclear;

(*this proc blanks out the first 3 lines of

the crt screen, i.e. the msQ area. ')

begin (* msoclear )
blankln(linel);
blankln(line2);
blanklm(line3)

end; (* msoclear )

procedure oause;
(*this oroc makes the user aware of error msas

and oromots by requiring his interaction w/ the

system.*)

vat
ans: char;

begin (' pause *)
xyaddr(col?4, lins3);

write(' Osoace> to continue ');

reoeat
read(ams)

until ans :
end; C' pause ')

to0



procedure oromot(oromotnum: inteaer);

(*this opo writes out the promot indicatedi by
promotnum in the msg area on the crt screen. *

beqin C prompt *
msgcl earl
xyaddr(collZo linef);
case orofmPtnum of

begin
write('EDIT MODE Q)uit A)ddiil~e X)tractffle ');
write('C)ursormove');
xyaddr(eo)l2* line2);
write('c)ooy d)elete i~nsert I)ocate m)oveo);
xyaddr(collt line3)i
wri teC 'r)eol ace s )etmarlcer 0 change');
myoddr(coino, rowno)

end;

begin
write('INSERT MODE#);
xyaddr(colge Iine2);
write(Ctrl a to accept; ctrI e to erase; )
write('ctri a to quit')

end;

begin
write(IFORMAT MODE')

end;
4 :

begin
write('COMMAND MODE >I');
iyaddr~colge fine2);

wr'iteC'r)eadfile w)ritefii)P');
xvaddr(colg + 22, linel)

end;

begin
wrlte('DELETE MODE*);
wyaddr(col8, line2);
write('ctrl a to accept; ctrl a to ouit')

end;

begin
writeC'COPY MODE')

end;

l01



write('MOVE MODE')
end;

beol n
writeC'proeessinq eomoleted.');
xyaddr(colgr line2);
write(Idelete markers set in buffer--y or n )
wyadr~col~r line3);
wri teC '2')

end;
10:
boqin

write('buffer full 1'
xyadtle(col8, line2);
write('cntui a);cceot or cmtu1 a)ult ?0)

end;
It:
beQin

write('does file already exist--y or~ n )
xyaddr(col8p line2);

end;
12:

beqin
write(lenter initial onoe no. followed by <cr2-1);
xvaddr(col8p line2);
wri teC(

end;
13:

beaim
write~lorimt listinq on UNIX orinter--y or nV)
xyaddr(coll2v lineP);
writeC ')

end;
14:
writo('at end of file');

15:
write(Ilisting belnq croduced');

16:
becim

write('SETMARKER MODE R)eQln Und N)ewlocn');
xyaddr(co)12 + 2v line2);
write(Imove cursor then entrl 8 to setmarker 1);
wrlteC'cntrl Q to ouit');
xyaddr(colgr llne3);
write(Itext between/includinq B) and E) chars 1);
write(lis nlaced before the cursor,')

end;

102



17:
becoin
wrlte(LOCATF MODE#)

end;

beciim
write('REPLACE MODE')

end;
1q:

write('at beoinnini of file');
20:
wqjte('XCNANGE MODE');

writeC 'Addfi 1.');
22:

wri te('*Xt race file');
23:.

begi n
write('Curso" Movementaros)
xyeddr(coI8p lime2);
write('(cr , U)scrolluo Dlseroildown P)aqe')i
wyaddu(co)8, line3);
write(b~einnnca of file e)nd of file')

end
end (*case *

end; (* romot *

103



orocedure errormsg(msgnum: inteaer);

(*this proc prints out the error mso indicated
by msgnum in the meg area on the crt screen.*)

begin (* errormso *)
write(bell);
msQclear;
xyaddr(coll2v linet);
ease msgnum of

1:
write('invalid command');

2:
beqin
write('movlnq the cursor is meaninqless w/ ');
write('no text oresent in the buffer.')

en;
3:
write('r)eadfile before enterinq EDIT MODE');

'i:

write('invalid EDIT command');
5:

write(lr)eadfile before enterinq FORMAT MODE');
6:

write('invalid INSERT command");
7:
write('all inserted text has been erased');

write('invalid DELETE command');
9:

beain
write('deletion direction must be consistent* i.e.');
xyaddr(col8, line2);
write('go riaht and down or oo left and up.')

end;
tO:
write('invalid SETMARKER command');

11:
write('begin marker already set');

12:
write(lend marker already set');

13:
write(Inew locn marker already set');

104

ti _ _ _ _ _ _ _ _



14:
write(lbegin marker must occur before end marker');

IS:
write('new locn Cannot be located in the delimited text');

ib:
write('begin marker has not been set');

17:
wrlte(lend marker has not been set');

18:
write('new locn marker has not been set');

19:
write(linsufficient buffer space for copy to occur');

20:
write('Please indicate the title tvpe--Iv 2, 3v VI);

21:
write('not implemented');

22:
write('r)eadfile before entering SETMARKER mode');

23:
write( 'buffer full!!!11W*)

end; (*case *
cause

end; (*errormsq *

105



Procedure Printer;
(*this Proc makes necessary adjustments to
margins for the UNIX printer.*)

begin P* rinter *
recat
Prompt (13);
suseri nput (1)

until (cmd~ll 'y) or (cindtll =In)
if cmd[1J = 'y' then begin

(*UNIX Printer's driver allows the user
to write only 63 lines to a og vice 6b.*)

tlnoffset :=2; (*2 In at thte too *)
blnoffset ::2 (P ?Ins at the bottom*)

end else beqin
tlnoffset :0;
blnoffset :0

end
end; P* rinter *

106



procedure netnumericmd;
(*this proc aets the numeric part of a format

command and converts it to an inteqer.*)

bein (* qetnumericmd *)
i := 0;
reoeat

i := i + 1;
ch := qetbufchar(*1);
Cmd[i) := ch

until break;
cmd(i) := ' ';
convrtnum(i - It numher)

end; (* getnumericmd *)

orocedure imotomarker(markerchar: char; inc: inteqer);
(*this Proc moves backward or forward thru the buffer

until the marker, e.q. bot is reached. inc indicates
the direction of the move# i.e. 12)==forward and
-12==backward,*)

begin (* imotomarker *)
ch := Qetbufchar(O);
if ch <> markerchar then

repeat
ch := cetbufchar(inc)

until ch markerchar
end; (* jmotomarker *)

107

-]



I

Procedure filename(calledby: char);

(*this Proc reauests user input of the name of
the file to be processed. Uo to 14 chars, includinq
the ',p' for a PASCAL file, consistinq of aloha and
numeric chars and the Period are allowed.*)
bein(* filename *)

msqclear;
xyaddr(coll2f linet);

case calledby of
#A#:

write('name the file to be added to the buffer,');

write(Oname the listinq filet');
or$ :

write('name the rawfile to be read into the buffer,');
W*wo
write(Iname the raw file saving the buffer contents,');

write('name the file to be eXtracted from the buffer,')
end; {case
xyaddr(col]8 line2);
write(lenter the fileneme.p, uo to 14 chars, 1);
write('followed by<cr>');
xyaddr(col, line3);
write('>*);

namingfile := true;
luserinout(Imavchars);
namingfile := false;
write('the filename is °, name);
pause

end; (* filename *)

10,

UP,



function startln(nolines: integer): char;

(*this func finds the beainninq of the line to be

displayed by either backtrackinQ or skipping forward

through the buffer by countinQ the number of line and
paragraph markers encountered and comoarinq this total
w/ the specified nolines. Startin returns an im or om.
nolines values indicate the followinq:

-n backward n line(s),
0 same line,
#1 forward n line(s). *)

begin * startln *)
if nolines <= 0 then begin (* oo backwards *)

(* to find start of current line *)
ch :2 oetbufchar(O);
If not newline and not bot then

repeat

ch := getbufchar(-l)
until newline or bot

end;
if (nolines < 0) and not bot then

repeat
repeat

ch := oetbufchar(-I)
until newline or bot;
nolines := nolines + 1

until (nolines = 0) or bot

else if (nolines > 0) and not cot then
( go forward )
repeat

repeat
ch := qetbufchar('1)

until newline or eot;
nolines := nollnes - 1

until (nolines = 0) or eot;

if bot then beoin
reoeat

ch := qetbufchar(41)
until newline

end else if eot then
repeat

ch := getbufchar(-I)
until newline;

startln := ch
end; (* startln *)

109



Procedure setcursor(nocol, nolines: inteaer);

(*this proc maps the cursor cot and row to the

correct oosition in the buffer. Nocol is the

col locn of the text char in the line of text.
See startin above for nolines descriotion.*)

begin (* setcursor *)

ch :: startln(nolines);
if nocol z lmargin then beaci

if boln then
colno := ]margin + I

else if bop then

colno :z pmargif + 1
else if ch z tabch then

orocesstab;
(*ot to 1st char in line in the buffer *)

reoeat
ch := qetbufchar(tl)

until textchar or eot

end else begin

if boln then
i := lmargin

else if boo then
i := omargin

else if ch = tabch then
i := Imargin + tab;

repeat
ch := getbufchar(+l);

if textchar then

i := i + I

until (i = nocol) or newline or eot;

(*if there are not enouqh chars in the line

then pt to the last one.*)

if newline or eot then

reoat
ch := oetbufchar(-1)

until textchar;

colno : i
end

end; (* setcursor *]

110



orocedure adjust ln( 1 cnt r: integer);
(*this proc inserts extra blanks in a In of words
so that the last char #if the last word is on the
right margin. Each In is divided into 2 carts at
midword. ibikent and rblkcnt are the 9 of blanks
inserted to the left and right of midword. endblkcnt

4 is the total 0 of blanks to be inserted in the In.
blklocns indicates where w/in the In blanks are located.
Inc is the offset in blklocns due to orevious blank
insertion. lend is the blank oosition orceding midword.*)

var
endblkcntr it incp Iblkcntp rblkent: integer;
midwordo wordcmto Insize, lend: Inteaer;
blklocns: array (1..201 of inteoer;

orocedure cntwords;
(*this proc counts the # of words in a In of text
and finds out where blanks may be inserted.*)

begin f*cntwords *
ci, := start inc-i);
wordcnt := 0;
i := 1;
if Insize > cemternfog + 3 then begin
while i <= lnsize do begin

cli := getbuichar(f1);
if ch= - then begin

fcheck for 2 scaces tooether)
if (wordcnt>)1)and(bl klocns (wordcntj "i-l) then beoin
wordcnt := wordcnt + 1;
blklocmsfwordcntI :% i

end else if wordcnt < I then beamn
wordcnt := 1;
biklocnstll := i

end
end;
i : + i I

end;
wordcnt :zwordcnt + I

end
end; (k cntwords *

lit



Procedure leftside;
(*thijs proe adjusts the left half of the line
by inserting extra blanks to the left of mldword*)

begin ( lpftside *

inc :2 0;
lend := lolkent * (midword - 1);
ch :2 startln(O);

reneat
ch := qetbufchar(1);
write(outfilet ch);

if (Inc ' lend) and (lblkcnt ) 0) then hegin

if i z blklocns(i) then beqin
for n := 1 to lblkcnt do begin

j := j + 1;
write~outfile,'

end;

inc := inc + lblkcntU
blklocns~il : blklocns(iJ i nc

end
end;
1 :2 j +

until Inc ) lend
end; (*leftside I

112



orocedure rtside;
(*this proc adiusts~ the riaht half of the line
by inserting extra blanks to the right of mfdword*)

begin (*rtside *

1 :2 midword;
receat

ch :2 notbufcher(tl);
write~outiile. ch);
I1 Ci wordcnt) and (rblkcnt 11 0) then begin
if j z blklocnstil then benim

for n I to rblkcnt do begin

write~outfile, 10)
end;
1 := i + 1
inc := inc + rblkcnt;
blklocnstil :z blklocnstil + inc

end
end;
1 :2 j + 1

until I nsize
endl ( rtside *

begin (*adiustin *
Insire :2 Inlenqth;
endblkcnt :z rmarqin - (Insize + lmarqim);
if .ndhlkcnt 2,0 then begin
cntwords;
if wordcnt 20 0 then begin

if lncmtr twod 2 = 0 then becirn
iblkent :2 endhlkcmt div (wordcnt - 1);
rblkcnt :lhlkcnt + 1;
midword ::wordcnt,(lblkcnt*(wordcnt-1)-endblkcnt)

end else beqin
rblkcnt :endhlkcnt div (wordcnt 1);
lbllcent 22rblkcnt + 1;
midword :z endblkcnt + I - rblkcnt *(wordcnt -1)

end;
lof ts ire;
rtside

end
end

end; (* djustin *

113



orocedure rdisplayln

(*this Oroc causes one line of un to 80 chars
to be disolayei on the crt screen at the line/
row oolition indicated by rowno.*)

begin (*disnlayln *
if bolrm then

colno := Imargin + I
else

colno :z omargirn + 1;
xYaddr(colmor rowno);

reoeat
ch := getbufcharC+1)1
i0 textchar then begin

wel te(ch)
end

until newline or ent
end; (*disolayln *

114L

AimK _ __



Procedure displaysereefl(col, nolines, row: integer);
(*this proc causes uo to (lastlin-msolrs)o

* usually (24I-3) op 21# limes to be disolayed
on the crt screen. noflnes is described in

startin. col and row indicate the final
cursor Position.*)
var

buflnento Inent: integer;
begin (*disclayscreen *

lnsoacinQ :2 1;
wri te(clear);
buflncnt :x 0;
lncnt :2 0;
rowno := I + msglns;
ch := startln(molimes);
repeat

dispi ayln;
buflmcnt := buflncnt + 1;
Incnt := lncnt + 1;
iowno :Z rowno + 1
case lngpacinq3 of

null,*,
2 :

if rowno < lastin then begin
lncnt :z lrcnt + 1;
rowmo := rowno +' I

end;

begin
lncnt :z lncnt + 2;
rowno :2rowno + 2

end
end (* case *

until (lncnt >= lastin - nisqlns) or cot;
if eot then
buflncnt :2 buflncnt - 1;

if row = I them
seteursor(col, -buflncnt)

else if rowno = lastln then
setcursor(colp 0)

else
getcursor(colp -bwflmcnt -row);

if inspacing 2 1 then
rowno := row + sqn

rowno :2 row * lnsoecinq - lnsoacing + 1 + msqlns;

,yaddr(colnop rowno)
end; (*disolayscreen *

I115



procedure scrol luo;

(*this proc causes the user window to move
backwards thru the text far enouoh to
move 18 lines# 314*'s of a screen, or
until bat is reached. It Provides for an
overlaor i.e. the too 5 lines will become
the bottom 5 lines, for contimuitve*)

var
uplns: imteQer;

beqi n (*scrolluo *
uplns := overlap - last in + mS~lnS - rowno;
disolaysereen(lmarainpuplIns,lastln-msqlns-overlao-t)

end; (*serolluo *

orocedure scrolldown;

(*this proc causes the user window to move
forward thru the text buffer far enouqh to
move 16 lines# 3/4Vs of a screen, or until
cot is reached. It Provides for an overlap&
i.e. the last 5 lines will become the too 5**)

variner

begi n (scrolldown *
downlns :2 lastin - msalms - overlao - rowno;
disolayscreen(lmarqin, downing, overlao - 1)

end;( scrolidown *

116

JOIA



procedure chQrowno(inc: integer);

(*this proc causes the row numbe incremented to be

or decremented by 1. It uses the terminal's HW
scrolling feature when at the bottom In on the CRT.*)

begin (* chqrowno *)
if (inc = -1) and (rowno = 1) then

Scrolluo
else

case Insoacing of
1:

if rowno < lastln then
rowno := rowno + inc

else begin {rownozlastlni
write(If);
displavin

end;
2:

if rowno < lastin then
rowno := rowno + 2 * inc

else begin (rowno=lastln)
write(If, If);
displayln

end;
3:

if rowno < lastln - 2 then
rowno := rowno + 3 * inc

else begin (rowno=lastln-2)
write(If, If, If, If);
disolayln

end
end (* case *)

end; ( chqrowno *)

117



Procedure maocursor(inc: inteqer);

(*this proc duplicates the cursor movement

on the screen as movement thru the buffer

so that there is a one-to-one corresoondence

between the cursor char and the buffer char.*)

(*inc has the values +1 and -t.*)

beqin (* mapcursor *)

if boP or boln them beaqi
case inc of

negl:
beqin (wracaround to end of orevious In)

ch :: startln(-I);
if boln then
colno imargin + Inlenqth + I

else
colno : omarqin + Inlenoth + I

end);
Post:

(go forward to next line)
if boln then

colno :: imargin
else

ColnO :: pmargin

end; (case)
charowno(inc)

end else if bot then

oromot(IQ)

else if eot then

oromot(14)

else
(other format commands)

null
end; (* mhocursor *)

Ila~

k_'

AWN1-



function getchar(inc: inteqer): char;

(*this func returns only disolayable text
chars from the buffer. It jonores the format
commands embedded in the buffer. *
Cinc has the values 41 and -1 *

conit
necql = -1;
00osi +1;

beqi n (* etchar *
case inc of

meol :
reveat

ch := getbufchar(-1);
if formatchar then
maccursor(-1)

else
colno := colno - 1

until textchar or bot;
POS 1:

repeat
ch := qetbufchar(tl);
if formatchar then
maocursor(*1)

el se
colno := colmo + 1

until textchar or cot
end; 0* case *)
if bot or cot then

repeat
ch := oetbufchar(-inc)

until textchar;
qetchar ::ch

end; (*oetchar *

I lQ



orocedure titleo~mfix(var omchars: inteaer);
(*this proC chances the oaraareoh-marqins
to conform to thesis manual goecifications
for indentation.*)

begi n At'itleomfix *
case cih of

pmarain := 17;

omar.ain :z 17;
'3'0:
Omaeemin ::21;

'4':

omarain 225;

'5#:
omaroin :217

end; (case)
pmchars :~rmarqin -omarqin + I

end;( titleamfiw *

120



Procedure orocessbuf~starto finish: inteqer);

(*this proc Processes the buffer after text
insertion, deletion or format chancnesp eeg.
rmarain or Imargin. Only the oaraoraph(s)
involvea in text changes will be reprocessed.*)

var
Imehars, P'nchars, noehars, cntr: inteoer;
halt: boolean;

procedure onlyread(stop: char);-
(*this proc Prevents orocessino of specially
formatted text such as titles# etc.*)

begin (*onlyread *
repeat

c'i := getbufchar(41)
until (ch =stop) or eot;
halt true

end; (*onlyread *

121



beci n (*orocessbuf

lmchars ::rmargin - hImarqin +' 1;
omncharg : rmarqin - omarqin + 1;
halt := false;
ci' :z startln(O);
if bufindx > start them begin

repeat
ch := startln(-1)

until bon and (bufindx <= start) or bot;
if bot then

repeat
ch := qetbufchar(4I)

until newline
end;
if bop then

nochars ::o'chars
elIs e

nochars :: rvchars;
repeat

cntr := 0;
repeat

ch := oetbufchar(+1);
if textchar or boltn then begin

cntr := cntr + 1
if boin then begin

c,' := 6
buffer~bufindxl := ch

end
en~d else if th z filloffch then

onlyread~fil1ich)
else if ch = titlech then benin

ch := oetbufeher(tl);
t itl1epmf ix (omchars);

oni yread(om)
end else if ch =tabch then

nochars :=nochars -tao

until newline or (cntr :nochars) or ent or halt;
if not (newline or halt or eot) then begin
if ch <>' then

(backtrack to space before word *
reoeat

ch := oetbufchar(-l)
until ch '

buffertbufindxl : Im;
noehars := lmchars

end else if boo then
nochars := Pmchars

else if halt them
halt :2 false

until boo and (bufindx >= finish) or eot
end; (* oroce5sbuf *

122



orocedure movecursor;

(*this proc causes the cursor to move on the screen
as well as mapoimg the cursor movement to the
movement thru the buffer. *

beoi n (movecursor *
if inchar = riaht then

(move forward I col *

else if inchar =left then
(move backward 1 col *

ch :=Qetchar(-1)
else if inchar =uo then beamn (* move uo 1 line *

setcursor~colnor -1 );
charowno (-I)

end else if inchar =down then beqin (*move down I line *
setcursor(col no, +1);
charowno(+I)

end else if inchar = IUJ then
(* backward 3/4's screen *
scrol luo

else if inchar = O then
(*t forward 3/4's screen *
scrol ldown

else if inchar ='b' then beamn
(* go to the beginninq of file )

imotomarker(botchar, -1);
displayscreen(lmargin, 0, +1)

end else if inchar z 'e' then benin
(* go to the end of file *
imotomarker~eotchar, +1);
displayscreen(rmaroin, -(2 * overlao) + 1, 2 *overlao)

end else if inchar =cr then oeqin
(*t move to 1st col of next line down *
setcursor(lmarcino +1);
chqrowno(*t)

end else if inchar = 'o' then
null;

xyaddr(co)Pp lastln);
wri te(ch);
xyaddr(colmo, rowno)

end; (tmovecursor )

123



procedure readraw;

(*this proc reads the raw file, if oresent, into

the buffer and reorganizes the buffer into the
correct structure. if no file is oresent the buffer
is set uo for the creation of a new file.*)

Procedure newbufinit;
(*this oroc initializes the buffer for the

creation of a new file.*)

begin (* newbufinit *)
(*botchar:formatrec:om! insert area !eotcharlemoty*)
(*beoindx: .. insheqg :insend! :buflimit*)

beqfmdx := 1;
bufferlbeqindxl := botchar;

bufferfbeqinlx + 11 := pm;
bufindx :2 begindx + 1:
insbeg : heoimdx f 2;
insend := buflimit - 2;
buffer(buflimit -11 :: cotchar

end; (* newhufinit *)

124-

6-}



procedure mrocessraw;
(*this Proc orocesses the raw file by counting off the

* no. of chars to be in a line after the marain spaces
are consiiered and includes the orover soacing consid-
erations. A orocessed line is oreceded by a Im of oam
if it is a Paragranh. Previously set lm's are blanked*)
var

cntr, lmchars, nochars, omehars: integer;
beg In (~Proeessraw *

omehars :rmarqin - oenaroln + 1;
lmchars ::rnargin - ]mnargin + 1;
nochars :: mchars;
hufjndx ::0;
j := 0;
while not eof(infile) do begin

cntr ;
'eceat

read(infile, ch);
bufindw := bufindx + 1;
if fill then
if textchar or boln then begin

entr := Cntr + 1;
if boln then

ch :
end else if boo then beqin

nochars := omchars;
S:= 0

end else if ch =tabch then
noehars ::nochars - tab

else if ch titlech then begin
buffer fbufindxl := ch;

bufindx := bufindx + 1;
read(infile, ch);
ti tlePmfi x(pmchars)

end;
bufferrbufindxl :=c

until newline or (cntr = nochars) or enf(infile);
if not (newline or eof(iniile)) then begin

if ch z* then begin
buffer~bufindx) :lIii;

j := 0
end else begin (baektrk to 'befnre word)

j .0 0;
repeat

; .= j +

until buffertbuf'fndx - l
buffertbufindx I i: m

end;
mochars 2 mchars

end
end

end; (toroeessraw *

125



orocedure oldbufinit;
(*this proe initializeS the buffer after an existinQ
file has been read jn,*)

var
bufend: integer;

begin (*oldbufinit *
(*botcharformatreccmbnmsert areateit :eotchar:emoty*)
Orompt (iU)
orocess raw;
bufend := bufimdx;
j :2buflimit -1

i ::bufend;
reoeat

buf ferfil I~ buffer (i I
bufferfil :

1 := 1 - 1;
i .- j - I

until i 2
insend :
beQindx: 1-1
insbeg :: beqind x C* 1l b fiend; reaodbufni *beoin(*rarw)
setdefaul ts;
write(clear). ffor Orevious reads)
fileread := true;
reoeet

oromot (11)
suserinc~ut Cl);
ch :z sstrinC1I

until (ch y') or (ch = n)
if ch a In' then beQin (emoty new file)
emotybuf :3 true;
newbufini t

end else begin (* nonemoty existina file *
emotybuf := false;
filename(');
reset(infiler namne);
oldbuflni t;
bufindx :2 beqindx + 1;
displavscreem(lmaroim, 0. t)

end
end; C'readraw *

126



Procedure writeraw;

(*this Qiroc writes the buffer~ back to storage.*)

begin (*writeraw *
fii ename ( w' )
rewrite(outfi Ic, name);
jmotomarker(botchart -1);
eh := oetbufchar(O);
write(outtilep ch);
if not cot then

reioeat
ch := qetbufchar(+1);
if not (ci, in rrubouto bin, em,, nm)) then
write~outfile, c',)

until cot;
flush(outfi le)

end; (*writeraw *

127



procedure listorocessed;

(this oroc Processes the buffer and writes out

the Processed text to the user-indicated file

for printing w/ no coov saved.)

var
lncnt: integer;

Procedure blankline(nolines: inteqer);

(* this proc writes out a blankline of Processed

text to the output file.*)

begin (0 blankline ')

for I := 1 to nolines do
write(outfiler cr, If)

end; (* blankline *)

Procedure endpage;
(*this Proc performs the end of oage

processing necessary for page numbering# prooer
margins# etc.*)

begin (' endpaae *]

repeat

blankline(1);
Incnt := lncnt + I

until Incnt >= maxogIns - oamarqin;

if oageno <> 0 then heain

write(outfile, paqeno: centerofpq);
Incnt I= ncnt + 1;

oaqeno := oaceno + 1

end;

blankline(maxpqlns - Incnt - blnoffset)

end; (* endpane *)

- 2A



orocedure writetltle(indentn: inteoer);

(*this proc writes out one line, a title*)

begin 0* writetitie *

for 1 :2 1 to indentn do

reoeat
ch :2 qetbufchar(tl);
if not formatchar then
write(outfile, ch)

until newline;
write~outfileo cr, If)

end; (*writetitle *

129



OoCedure OrOCestitle;
classification as 1st orderp 2nd orderp etc*

according to thesis manual instructiofls.*)

beqim (* rocesstitle *

Ch :2 qetbufchar(tt);
case ch of

beol n
endpage;
blankline(tmarQil + 3);
Omarqin := 17;
wri tet it) efenter);
blank) ine(2);
lflcft tmargifl + 6

end;

beQi r
if (inent 2tmaroin) or (lncnt z tmargin + 6) then

Inent := )ncnt - 1
else

blank) ine~i );

omarain := 17;

blank lirie(l);
Incnt := lncnt + 3

end;

beoi n
omarain :2 21;

bi anki ineC 1);
Incmt := lncnt + 2

end;

heoi n
omarqin ::25;

wrftetitle(lmarinf +8);
blank) ine(1);
Incnt := Incmt + 2

end;
I5':

endpage;
blankline(tmaril + 3);
omarain :z 17;
wri tetit le(center);
blank) ine(2);
Incnt :z tmargin + b

end
end (case)

end; (*Processtitlek)

130



F

procedure listln;

(*this proC writes one line of processed text

to the outout file.*)

begin (k listn *)

if ch = titlech then begin

orocesstitle;
atitle := true

end else begin
if boin then

for i := I to Imarain do

wrlte(outfileu

else if boo then
for i := I to omarain do

write(outfilep ' @)

else if ch z breakch then

for i := I to lmarQin do

write(outfile, ' ')

else if ch 2 ooeleetch then

endpaqe;
repeat

ch := Qetbufchar(4I);
if not newline then

if textchar then

write(outfile, ch)

until newline or eot;

wrlte(outfilet cr, If)

end
end; ), listln *)

131

a1



begin (*listorocessed *
atitle ::false;
Inspacino S2;

alisting :true;
filename;
rewrite(outfi Ie, Istrirg);
jmotomerker(botcharo -1);
repeat

eh := getbufchar(41)
until newline;
oromot (12);
suserinput (3);
comvrtnum(1, Paqeno);
centerofog := (rmarqin - imarqin) div 2 + Irnarain;
Promot(l5);
tmarqin :ztmaroin -tlnoffset;
b'nargin ::bmarqin + blrtoffset;
vqmargin :~oq'at-gin + blnoffset;
repeat

blanlcline(tmargin);
lncnt := tmargin;
repeat

list in;
if not &title then
case Insoacing of

1:
lncnt := Incmt + 1;

2:
beoin

blankliine(1 );
Inent := lncnt + 2

end;

end ;; 1C*L + case~n)
else

until eto Iet>mxon mri)
endoage

until eot;
pause;I
alisting false

end; itrcse

1 32

mi



begin (*checkmarkers *
markersok :x true;
case calledby of

(Addf i Ie)
tptest5;

C.I

if begmiset and emdmset and newmset them beoin
mtest 1;
mtest2

end else begin
mtest3;
mtestM;
mtest5

end;

Opiove)
if begmset and end"'set and newmset then beamn
mtest 1;
"'test 2

end else begin
mtest3;
m'test 4
MtestS

end;

if egmst and end'nset then

fftestl
else begin

mtest 3
'wtest 4

end;

(searchi
if begmset and endnset then
M tes9t 1

else begin
mt est 3
'test4

end;

if begmset and endmset them
n'test I

else begin
mtest 3
nitest4

end
end (case)

end; (*checkmarkers *



orocedure format;
begin (*format *

pIromot (3) fra
end;( omt*

1 34



Procedure edit;
var

exit: boolean;

orocedure copy;
(*this prOC allows the user to conv/duolicate
a body Of text w/in the buffer as loncq as the
entire copy will fit into the buffer. The
material to be copied is delimited by 2 cursor
settings. The new loco is also set w/ the cursor.
Note that the cooy will oreceed the cursor locr,. *)

var
inc, textlenqthr start, finish: inteqer;

procedure cooychar;
(*this Proc actually performs the char
transfer in the cooylnq*)
hepi n (*cooyhar *

butferfinsend) :~em;
buffertendindxl ::em;
repeat

insend ;:insend - 1;
enrljndx :~endindx - 1;
hufferfinsend] := bufferrendindx)

until endindx zbeaindx + 1;
buffertinsend - 11 := bin;
bufferfoegindx1 : bm;
insend := insend - 2

end; (*copychar *

139" A



begin (*cooy *
checkmarers(ec');
if markevrsok then

if insend - insbeg > endinrix -beginclx then beoim
text length := endindx - beaindx;
if bufindx < newindx then

inc := +1
else if bufindw > newindx then

inc -1
else

inc ::0;
repeat

ch := oetbufch.ar(inc)
until ch= m
rep'eat

ch := q~etbufchar(-1)
until not formatchar;
if endindx < insbeg then beoin

start ::begindx;
finish ::insend + 1 - textlength;

end else beqin
4. .. !im sen'1 mm . .. : bm: . .. : em: . .. )

bufindx := insend + 2;
reoeat

ch := bufferlbufindxl;
bufindx := bufindx + (+l)

until ch =em;
endindw : bufindx - 1
beoincix ::endindx - textienoth;
start :2 insend + I - textlenoth;
finish := endindx - textlenqth;
cooyc har

end;
bufindx := insbeg - 1;
JmotomarkerCnm, 41);
buffertbufindxl := nm;
crocessbuf(start, finish)

end else
errormsg( 19)

end; (*CODY

1t36



procedure delete;
*1 (*this proc allows the user to delete chars in

either the right or left direction by movingq the
cursor in the desired direction. an entire line
of chars is deleted if the cursor is moved up or
down, deletion in the buffer only occurs upon
user acceptance. note that format cmds w/in the
deleted area are also lost.*)

var
forwrd, backward, finished: boolean;
stop: intener;

procedure delscreen(dir: char);
(*this oroc writes blanks or blank lines to
the screen to show how the deletion will
appear. note no deletion occurs in the buffer.*)

begi n (* deiscreen *
(deletion only reflected on screen)
if (dir zright) and not backward then begin

forwrd := true;
write(' *);
ch := oetchar(41)

end else if (dir = left) and not forwrd then begin
backward := true;
wrftefleft, I 'P left);
ch :2 qetchar(-1)

end else if (dir zuo) and not forwrd then begin
backward := true;
blank ln(rowno);
setcursor(rmargin, -1);
chgrowmo(- );
if rowno =I then begin

scrol luo
for i :z 1* to overlap - I do
blankln(rowno + i)

end
end else if (dir ')and not backward then beoin

forwrd := true;
blankln(rowno);
setcursor(lmarqin, +1);
chqrowno(1I)

end else
errormsg(9);

xyaddr(colnov rowno)
end; (*delscreen '

1 37



Procedure delprocess;
(*this proc causes the deleted text to be,
removed fromt the buffer and Processes the
remaining text as reouired.*)

begin (*delorocess *
delend := bufindw;
if iorwrd then begin

~.J delete area insert area ..

(...,delbeq ...Jdelend~insbea:...Jinsemd! ...)
bufindx := delbeq;
receat

ch := qetbufchar(-1);
if formatchar then
delbeg := vielbeg - 1

until textchar;
insbeg := delbeq;
Processbuf(delbeqp delend)

end else if backward then beoim
( ... ?delchar! insert area :delete area
( . .. idel erd I nshea .. . H nsend I . ..... :cdel beg: . .. I

bufindx := insbeq - 1
reoeat

eh := aetbufchar(-18;
if formatchar then
delend := t~elend - 1

until textchar;
insend ::delbeg;
insbeg ::delend;
orocessbuf(delende delbea)

end
end; (*delorocess *

3lo



begin (*delete *
xyaddr(colmot rowno);
finished := false;
forwrd ::= false; (also downward)
backward := false; falso upward)
delbeg := bufindx;
repeat

reed(imchar);
if inchar in (rioht, left, uo, ' 1 then

del screenCi ncha r)
else if ch Quit then (no deletion occurs)

finished :~true
else if inchar =accept then begin

ideletion w/in buffer actually occurs)
del orocess;
finished := true

end else begin
errormsg(8);
Promot (5)
xyaddr(colno, rowno)

end
until finished;
it forwrd then

stop ::delbeg (backward)
else

stop ::delend;
repeat

ch := oetoufchar(1I)
until (bufindx <= stop) and boo or bot;
if bot then betgin

repeat
Ch := coetbufchar(tl)

until boin or boo or eat;
if cot then

emotybuf := true
end;
if emptybuf then

wri te(c lear)
else
displayscreen(lmaroin, -overlaot overlap + 1)

end; (*delete *

139



orocedure exchange;

(*thfs proc allows the user to Chanqe both format
commands and text characters directly in the buffer. It in
primarily used for trouble-shootinq.*)

begin (* exchange *)
reoeat

read(inchar);
if inchar C> quit then begin
buffer(bufindxl := inchar;
ch := Qetbufchar( |);
xyaddr(4p lastln);
if textchar then
write(Ch)

else if boo then
wri te ' ')

else
w rite '\'

end
until inchar z quit;
disolayscreen(lmaroin, 0, +1)

end; (* exchanqe *)

140|



Procedure insert;

(* this proc Causes tewt to be added to the

buffer before the char inoicated by the cursor. *)

var
i, J, inspos, insquit: inteqer;
finished: boolean;

procedure inserterase;
(*this proc moves the cursor back to the precedinQ
char and blanks out the last entered char. wrao-
around occurs, in addition the cursor movement is
duplicated in the buffer.*)

beqin (* inserterase *)

if bufindx > insoos then beqin
ch := buffer[bufindxl;
(wraparound from new emoty linek
if (ch = fillch) or (ch = filloffch) then beqin

fill :2 not fill;
bufindx :: bufindx - 1;
lnsbeq := insbeg - 1

end else if not newline then beqin
bufindw := bufinix - 1;
insbq := insbeq - 1;
ch := bufferrbufindx];
write(left, ' , left)

end;
if newline then beain

(wraparound to end of Previous line)
i := 1;
repeat

ch == bufferlbufindx - il;
i := i + I

until newline;
If boln then

colno := i - I + lmarqin
else if boo then
c0no :z i - I + omaroin

else if ch tabch then
colno : i - 1 + Imarqln + tab;

rowno :2 rowno -;
buflndx := bufinIx - 1;
xyaddr(colno, rowno)

end else Isame line erse)
colno := colno - I

end else beqin
errormsq(7);
prompt(2);
xyaddr(colno, rowno)

end
end; C* Inserterase *)

14t



Procedure endllne(nowr aoned: imtecer);
(*this Proc removes extra b~lanks from the end of
the previous line, sets the irn or om, prepare$
the crt screen to display the next inserted char
and rotates chars to fill the stripped slots.
nowraooed is the # of chars to be written to the
new line.*)

var
lastch: char;

begin (*endline
(remove extra blanks at eoln i0 oresent)
j := 0;
repeat

lastch 2 ufferlbufindx j]i;

until lastch"
insbeg :: nsbeq -j+2;

bufindx :bufindx -1+ 2;
( set marker )
if boP then begin

colno := pmarqin + 1;
buffer~bufindx) := om

end else begin
colno := Imarqin +. 1;
bufferibufineixj := Im

end; i
f prepare crt screen I
if rowno < lastln then beqin

rowno := rowno + 1;
bl ankl n( rowno)

end else
write( I 4);

wyaddr(colno, rowno);
(rotate and write wraoced charsi
if nowraoped N, 0 then

repeat
bufimdx :=buflndx +. 1;
if j :2 then

buffertbufindxl := buffer~hufindx 1. ;
write(tbuffertbuiimdxl );
nowroooed :z nowraooed 1

until nowraoperl I
end; (* endline 0)

142



procedure outchar;
(*this Proc adds another char to the buffer.*)

beqin (* outchar *)
bufindx := buflndx + 1;
bufferibufindxl := ch;
insbeq := lnsbeq I 1

end; (* butcher *)

procedure lnsertchar;
(*this proc adds a new char to the text buffer and
Provides automatic line wraparound, note that the
current buffindx contains a char while insbeq is

empty.*)

begin C* insertchar *)
if fll then

if Colno <= rmarqin then
If ch 2 tabch then

COlno :2 colno + tab
else begin
write(ch);

colno := colno + 1;
outchar

end
else if (colno 1, rmarqin) and (ch z e) then

endline(O)
else begin (nonblank char at eoln)

(if (colno>rmarqini and (ch<> ))
outchar;
i := 1; 44 of wraooed chars)
(backtrack to soace before word)
repeat

ch := buffer[bufindx - il;
I :z i + 1

until ch = 1 ';
(blank out wraooed chars on screen)
colno :: colno + 1 - I;
xyadlr(colno, rowno);

for 1 := 2 to I do
write(' ');

(write wrapped chars on new line)
bufindu :x bufindx - I;
endline(i);

colno : colno + I
end

else
(no fillinq or autowrav)

putchar;
(check for full buffer)
if lnsbeq a insend - 1 then (full buffer)

orompt(10)
end; (* lnsertchar *)

143

• !;

[~



orocedure lnsforvatcmd;
(*thie Proc adds format commands to the buffer and
handles soecial insert entries, e.q. tables.*)

beqin (* insformatcmdchar ')
tf bop then
endline(O)

else if (ch z cr) and not fill then beaim
( ignore cr and fill )
ch := ilm;
endline(O)

end else if ch z filloffch then beqin
outchar;
fill :z false

end else if ch = fillch then beoin
outchar;
fill := true

end
end; (* insformatcmdchar *)

vrocedure insprocess(action: char);
(*Phis Proc orocesses the inserted text and
surroundino text as necessary, note that
emptvbuf indicates the creation ot a new file.*)

begin (* insorocess *)
if action acceot then
action :' A'

else
action :2 SG;

case action of

beain
if emotybuf then beqin

imotomarkee(hotcharp -1);
Processbuf(insoose buflimit)

end else beqin
insquit ! insheo - 1;
orocessbuf(insoosp inshea - 1)

end;
emotybuf := false

end;
too:

becin
(no insertion occurs)
insbeg :: insoos;
bufindx := insbeq - t

end
end (case)

end; r* insprocess *)

... ..4- -4 I I



beoin (* inseret
if emptybuf then begin
Itowno +: I msqlns;
colno :~Pmargin +. 1

end else begin
(blank out the end of the line ~

iyaddr(calnot rowno);
for 1 :2 colno to lasteol do

write(' ');
blanklm(rowno + 1);
(* inser~t before cursor '
ch := getbufchar(-1)

end;
xyaddr(colno, urowno);
finished := false;
inaoos := insbeg;
receat

read(ch);

if newline then
Ins formatcmd

else if textehar then
insertchar

else if ch =erase then
I nsert erase

else if (ch x acceot) or (ch =quit) then begin
insprocess(ch);
finished := true

end else begin
erormsg(b);
promot (2);
xyaddr(colno, rowno)

end
until finished;

if not emptybuf then begin
reoeat

ch := oetbufchar(-l)
until (bufindx <= insguit) or bot;
displayscreen(lmaroin, 0p +1)

end else
wrl te(cl ear)

end;( insert *

LoU



Procedure locate;
(*this proc performs a Pattern Search thru the
file for the input pattern strino and Positions
the cursor at the "found" Pattern or at the end
of the searched area.*)

begin (* locate *)
errormsq(21)

end; (* locate *)

Procedure move;
(*this Proc allows the user to move text from

one Place to another in the buffer. The body
to oe moved is delimited by 2 cursor settings.
The new locn is also Set with the cursor.
Note the moved material will preceed the
cursor Dostion*)

begin (* move )
null

end; move *)

Procedure reolace;
(*this Proc will utilize the locate oroc to
replace a specified Pattern w/ another one
either once or'multiole times w/in the
delimited area of text.*)

begin (* replace *)
errormsg(21)

end; (* reolace *)

14~6



arocedure Addfile;
V (*this proc adds the user-snecified file to the

buffer contents at the locn indicated hv mm*)

var
addoosp addQuit: inteqer;

beqimn( Addfile *
filenameC' A ') ;
set marker;
chokckmarkers('A);
if markersok them beoin
addpos := bufimdw;
reset(jnfilep name);
jeptomarker(botcharp -1);
jmotomarker(nm, +1);
read(infiles ch);
reoeat

read(infile, ch);
bufindx := bufindx + 1
buffertbufindxl := ch

until eof(infile) or (hufineix inacnd -1);

insbeq :2 bufindx + 1
addQuit := bufindx;
if not eat(infile) then
errormsg(23)

else beoin
oromot (8);
reoeat

read( inehar)
until inehar in Pmn, 'Y'i;
if inchar = 'Y' then

del markers
end;
oroceasbuf (addoos, add~ui t);
reocat

eh := aetbuichar(-I)
until Cbufindx (: addquit) or bot;
disrplaysereen(lmarqin, 0, *1)

end
end; (*Addfile *

-147

4Le x~-



procedure Xtraetfile;
(*this proc writes the buffer contents delimited
by bnt and lIm out to a file*)
begin (*Xtractfile *

fii ename C')
set marker;
checkmarkers( X');
if markersok them begin

rewrite~outfile, namie);

write(outfilet botChar);
jmtomarker(botchar, -1);
ch := qetbufcharCI);

repeat
wri te(out file, ch) ;
ch := getbufchar(#t)

until ch z m
write(out file, eotChar);
rewrite(outfile); Iforce dumo of lastI/O block)
orompt (8);
reoeat

read( incher)
until inchar in C'n' 'y]
if inchar z y' then

del markers
end

end; (*Xtractfile *



begi n-( edit *
if flleread then begin

exit :=false;
Drompt (1);
rece at

xyaddr(col nor rowno);
read( inchar);
if inchar in

(cr,down,1eftpriahtsuo, 'I', 'IJ',', 'e', 'h'I then
if not emptybuf then
movecursor

else
errormsq(2) (* text not Present *

else if inchar~ in edcmdset then begin
case inchar of

'A'I:
begin

o'rompt (21);
Addf i Ile

end;

begin
promot (6);
COPY

end;
'C 0:
iCursor movement)
oromot (23);

benin
Orompt (5);
delete

end;

heg in
prompt (2);

nsert
end;

begin
oromot (17);
locate

end;



begin
oromat (1);
move

end;

exit := true;

begin

reol ace
end;

S I .

begin
promot (16);

set marker
end;

9x6
beamn

orompt (20);
exchange

end;

begin
oromot (22);
Xtractfi le

end
end; (* edit case *
if not exit then
promlt (1)

end else begin
errormsqUJ);
promat (1)

end
until exit

end else

end; eror*g3 edit a

I50



beoi n * mainline of scope i*

(*this is the driver for the command level and thus
SCOPE. It allows the user to read in and process
the desired file; edit and format the file in the
buffer and to save the file by writino it to the
printer or to storage.*)

stoo := false;
namingfile := false;?
fileread := false;
emdset := (r', tw, @lop let, loop Of');
edcmdSet :=
[$Cie, ti I a9 O ct, 'i' Oro, 11',0 qs', x',' AI, C',1Xl'
cursorinoveset :z (uotdowntricht,leftrcr,'b','e','D','U'l I
terminal; (* prompt mso in proc *
orint er;
setdefaul ts;
set forinatcmds;
write(clear); (* clearscreen a
reoeat

crompt (4);
suseri nout (1);
cmdchar := cmd(lfl
if cindchar in cmdset then
ease cmdchar of

r I
readraw;

wI
wri teraw;
1:
11 storocessed;

edit;1

stop := true;

format
end (* decode case a

el se
errormsq( 1)

until stop;
wri te(elear)

end.



LIST QF REFERENCES

1. Aflm-XA n. atcrs Manual Lear-Siepler, Inc.;
Anaheim, California; May 1979.

2. gilofsky, W.; Th. CPT Editor NEn--Introctuction
and Peieremce manua~l No. R-2176-APPA; RAND;
Santa Monica, California; December 1977.

3. Rover, R. S. and Moore, J. S.; "A Fast String
Searchina Aloorithm;" Communications of the.
Arm: V. 20, n. 10; D. 762-772; October 1977.

4I. Dunn, N.; "The Office of the Future Part W"
Comouter Decisions; o. 1b-26; July 1979.

5. Dunn, N.; "The Office of the Future Part 11;"
Con-outor Qecisions; 0. 68-75; August 1979.

6. EDTT Version 7, AMOS/2 Display Text Editor
Programmer's Reference Manual Revision A; Adaqe,
Tncp, Boston, Massachusetts; Septemuer 1972.

7. EDT, DEC Editor Reference manual No . AA-5789A-TC;
Diaital Equipment Corporation; Maynard,
Massachusettsq; December 1977.

8. Elite 1520 Technician Manual; Datamedia Corporation;
Pennsaukcen, New Jersey.

9. Elite 2500 Instruction Manual; Datamedia
Corporation; Pennsauken, New Jersey.

10. G~raham, S. L., Haley. C. 8. and Joye W. N.; Berkeley
PASCAL User's Manual--Versiom 1.1; University
of California, Berkeley; April 1479.

It. Jensen, X.P and Wirth, N.; PASCAL--User Manual
and Qevor; Sorinqer-Verlaq; New York,
New York; 1975.

12. Jensen, Q. ". and Tonies, C. C.; Software
Fnaineprina; Premtice-Hall, Inc.;
Enolewood Cliffs, New Jersey; 1979.

13. Joy# A4. N.; An Introduction to nisplay Editing
with Vi; University of Cal ifornia, Berkeley;
Aoril 1979.

152



14. Keddv, R.r Hadjioannou, M., Muntz, R., and Shemere J.;

"Overview of the Functional Features and Software
nesian for a Disolay Word Processor;" COMPCON

Soring Digest rf Peoers; n. 59-62; February
1977.

15. Kernighan, B. W. and Plaugher, P. J.; Software

Tools; Addison-Wesley Publishina Company;
0. 163-250; 1976.

16. NROFF User's Manual--Second Edition, Version 9/11/74;

Bell Labs; Murray Hill# New Jersey.

17. Sharma, D. K.; "Text Handling in an Automated

Office;" National Telemetering Conference Paoers;

o. 40:6-3 to 0:6-b; 5-7 December 1977.

18. Shemer, J. E. et. al.; "Development of an Experimental

Display Word Processor for Office AoOlications;"

COMPCON Soring Diqest of Papers; p. 42-46;

February 1977.

19. Synders, J.; "Word-Processinq Packaaes for CPUs;"

Computer Decisions; o. 79-87; January 1980.

20. "Trends in Comouting--Apolications for the 80's;"
White Paper to Manaqement by International Data

Corp.; Fortune; 0. 29-70; 19 May 1980.

21. Triyono; Desion Methodolooy for an "Easy-to-Use"

Text Processor; M. S. Thesis; Naval

Postqraduate School; Monterey, California;
June 1978.

22. IJCSD (Mini-Micro Comouter) PASCAL Release Version

1.4, Jan 1978; University of California,
San Dieqo; April 1978.

23. UNIX Proarammer's Manual, Sixth Edition; Bell Labs;
Murray Hill, New Jersey; 1975.

24. Wilds, T.; "The Smart way to Pick Word Processors;"

Computer Decisions; o. 71-74; January 1980.

25. Wohi, A. D.; "A Review of Office Automation,"
Datamation; p. 117-119; February 1980.

26. WPS-8 Word Processing System Reference Manual
No. AA-5267C-TA, Versions 2.7 and 3.0; Dital

Equioment Corporation; Maynard, Massachusetts;

December 1978.

153



INITIAL DTSTRTBUTTON LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterev, California Q3O0

3. Dep.rtment Chairman, Code 052 2
Department of Computer Science
Naval Postgraduate School
Monterey* California Q3q4O

4. LCDR Frank Burkheadr USN I
22306 Capote Drive
Salinas, California 93908

5. Professor Lyle Cox# Code 052C1 I
Deoartment of Comouter Science
Naval Postgraduate School
Monterey, California 93q40

6. Captain Lisa Talmaqe, USMC I
Office of Manpower Utilization
Buildino 2009
Quantico, Virqinia 22134

154

-



DATE

FILMED


